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1 Introduction

The run-up in house prices prior to 2006 was far from evenly distributed across the U.S. Some

states and MSAs experienced unprecedented boom times; others were much less affected.1 Why

did we see so very different house price inflation rates across MSAs when all MSAs are subject to

the same federal funds rate in a highly integrated financial market?2 The key point of this study is

to show empirically that the vast differences in home price inflation rates experienced at the MSA

level, especially prior to 2006, can be tied to differences in local demand and supply conditions that

systematically and predictably cause monetary policy to have rather different consequences at the

local level.3

We first discuss the demand and supply channels through which monetary policy might affect

residential house prices. This helps to clarify how local demand and supply conditions can influence

the impact of national interest rate policies at the MSA level. We then provide a novel estimation

approach that consists of two independent components, a state-space modeling framework and

interaction terms between a time-varying national policy variable, the federal funds rate, and largely

time-invariant MSA-level characteristics, such as the percentage of undevelopable land.

The interaction terms explicitly incorporate into the estimates characteristics of the MSAs that

would ordinarily be captured implicitly by MSA-level fixed effects in a typical panel data set-up.

The interaction terms allow for a weighted impact of the national policy on individual MSAs without

requiring MSA-level variables to be available as continuous time series. This is significant from a
1Wheaton and Nechayev (2008) report that real home prices increased by 74% in Boston, 10% in Los Angeles,

11% in Chicago and decreased by 21% in Dallas and by 38% in Houston from 1980Q1 to 1998Q4. In contrast, from
1999Q1 to 2005Q4 the increases were 83% in Boston, 123% in Los Angeles, 42% in Chicago, but only 12% and 19%
in Dallas and Houston, respectively. See also Glaeser, Gyourko, and Saks (2005) who argue that the dispersion in
housing prices has increased substantially since 1970, and mainly in the upper tail of the house price distribution.

2For instance, Landier, Sraer, and Thesmar (2013) document increasing correlation of house price growth across
U.S. states due to geographic integration of banking markets. However, the level of price changes differ significantly
among local housing markets. Similarily, Kallberg, Crocker, and Pasquariello (2013) as well as Cotter, Gabriel, and
Roll (2015) find that comovements among 14 MSAs significantly increased from 1992 to 2008. They attribute this
increase to underlying systematic real and financial factors, which are responsible for greater fundamental integration
of those markets.

3The mid-2000s U.S. episode of rapidly rising house prices was closely related to aggressive mortgage lending
practices and relaxed mortgage requirements (Pavlov and Wachter, 2010; Dell’Ariccia, Igan, and Laeven, 2009). The
traditional banking model became less profitable and the banking system transformed from “originate and hold”
to “originate and distribute.” At the same time, the supply of asset backed securities (ABS) and the demand for
alternatives to insured deposits led to strong growth of the shadow banking system. In addition, capital requirements
were effectively removed for investment banks in 2004 for their securitization business (Calomiris, 2010). Fiscal policy
interventions, in particular the Bush tax cuts, may also have had some effect on home prices. However, this study
focuses on the impact of monetary policy and its interaction with house market related demand and supply drivers.
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practical estimation point of view because continuous time series of MSA-level characteristics may

not be available or insufficient variation in their values over time may make estimation difficult.

Compared to the standard panel approach, we employ for estimation a state-space framework

of the structural time series or unobserved component type, both in its univariate and multivariate

setting. Relative to a panel estimator with deterministic time trends and other non-stochastic

components, our approach allows for a far more flexible, data driven way to capture the impact

of unobserved or unknown variables that may give rise to stochastic jumps or trends, which may

significantly impact the estimates and policy conclusions if left in the residual term. Our results

suggest that house price inflation rates react most vigorously to changes in the federal funds rate

for MSAs with high population growth and a large percentage of undevelopable land. We show that

our results are robust to different estimation approaches.

The remainder of the paper is organized as follows. In the next section, we provide a brief

overview of the literature on the relationship between monetary policy and house prices, and the

demand and supply conditions in local housing markets through which monetary policy influences

house prices. Section 3 describes our identification strategy. Section 4 discusses our data. This is

followed in section 5 by the estimation results and some robustness checks. Section 6 concludes.

2 Monetary Policy and House Prices: A Review

In one of the first studies on the economics of interest rates and housing Poterba (1984) argues

that the relationship between rents and prices is determined by the costs of borrowing money. As a

consequence, house prices can strongly react to changes in interest rates. Leamer (2007) emphasizes

that attempts to control the business cycle need to focus on residential investment and that housing

is an important channel through which monetary policy affects the economy directly or indirectly.4

The user cost of capital is a direct channel through which monetary policy affects the housing

market. As an important component of housing demand it consists of several factors and is defined
4Other than through the user cost of capital, monetary policy has a direct impact on house prices through house

price expectations and new house construction. Monetary policy indirectly influences the housing market and the
overall economy by the wealth effect and by the credit channel effect on consumption and housing demand, as
discussed, for example, by Mishkin (2007).
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as

UC = Ph [(1− t) i−4P e
h + δ] ,

where Ph is the relative price for a new single-family home, i is the nominal mortgage rate, which

is assumed to be deductable by the marginal tax rate t. The cost of capital decreases with the

expected appreciation in house prices 4P e
h and rises with house depreciation δ.

To show how the housing market responds to monetary policy, we refer to the structural model

of the housing sector (see, e.g., DiPasquale and Wheaton (1994) and McCarthy and Peach (2002)).

Note that this simple model only illustrates the proposed mechanism, but does not describe our

empirical specification. The demand function expresses the relationship between the equilibrium

house price P d∗
h and the current stock of housing S, permanent household income Inc, population

Pop, and the user cost of capital UC,

P d∗
h = α1S + α2Inc+ α3Pop+ α4UC

= α1S + α2Inc+ α3Pop+ α4 (Ph [(1− t) i−4P e
h + δ]) ,

with the corresponding response parameters α1, α4 < 0 and α2, α3 > 0 . If additions to the housing

stock (C ) are equal to its depreciation (δS), the housing stock is constant in the steady state, i.e.

4S = C − δS = 0. In such scenario, more economic activity and the accompanying increase in

attractive job offers (and/or amenities) increases households’ income, which, in turn, makes housing

more affordable to them. Simultaneously, the regional economy might attract more people, which

further increases the demand for housing. Both effects lead to an outward shift of the demand curve.

If the demand reacts strongly to changes in income (α2 is large), house prices increase. This effect

is reinforced by a decreasing user cost of capital due to a lower mortgage rate. Simultaneously,

population growth drives up rents and a lower interest rate decreases the yield, which again leads

to higher prices. Similarly, if stock is highly inelastic as a result of zoning restrictions or natural

limitations, i.e. due to undevelopable land, house price inflation is more pronounced, when expansive

monetary policy triggers higher demand.

The supply function mirrors the construction industry, where the house price represents the
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replacement costs of real estate,

P s∗
h = β1 + β2

(
C

S

)
+ β3CC,

with β1 representing the minimum value per unit space that is required to get construction underway.

The higher the investment rate, C/S = 4S + δ, the stronger will be the increase in the housing

stock, which causes house prices to decrease. By contrast, construction bottlenecks, land scarcity,

or zoning restrictions limit the housing supply. Furthermore, construction costs (CC ) include costs

for the production factors material, labor, and land. With increasing legal and natural building

restrictions, new construction becomes less profitable. Amenities and regions of extraordinary high

quality of life drive up land prices as well. Furthermore, higher short-term interest rates and the

scarcity of construction financing will lower the level of construction, and thus, the housing stock.

Hence, if supply is inelastic and financing costs are high, the impact on house prices is reinforced,

i.e. either house prices increase to remain at a profitable level or supply does not increase. In

equilibrium it must hold that P d∗
h = P s∗

h = P ∗h and the effect of interest rates on house prices is

conditional upon regional demand and supply characteristics.

If a strong connection exists between interest rates and house prices, loose monetary policy

may be tied to housing bubbles. This view is supported by Taylor (2007) and Allen and Carletti

(2009), who consider monetary policy a key factor in pushing housing activity after the collapse

of the technology bubble and the subsequent recession in 2001. Gordon (2009) shows that the

Fed maintained short-term interest rates too low compared to the Taylor Rule and, therefore,

indirectly contributed to the U.S. house price bubble. Calomiris (2009) agrees that the Fed departed

substantially from the Taylor rule during the period 2002 to 2005 and that lax lending practices

fueled house price run-ups in the U.S. and other countries, such as Ireland, Spain, and the U.K. In

a similar vein, Bjønland and Jacobsen (2010) find that house prices in Norway, Sweden, and the

U.K. react immediately and significantly to monetary policy shocks.

While previous studies argue that monetary policy is an important source of house price inflation,

there is a strand of the literature which finds only a moderate impact of interest rates on house prices.

For instance, Glaeser, Gottlieb, and Gyourko (2010) provide evidence that interest rates can only

explain about one-fifth of the increase in house price appreciation from 1996 to 2006. Skepticism of
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the strong role of monetary policy is also raised by Bernanke (2010), who suggests that the rising

use of innovative mortgage instruments and the corresponding relaxation of underwriting standards

triggered the house price bubble. Hence, regulatory and supervisory policies rather than monetary

policies should be held responsible for house price inflation.

In line with the observation by Fratantoni and Schuh (2003) that economic sensitivity to

monetary policy varies across regions, Christidou and Konstantinou (2011) demonstrate that the

transmission of monetary policy to house prices is heterogeneous across U.S. states and that regional

housing market conditions respond differently to a common monetary policy shock. However,

no reasons for the differences in the responses are explicitly estimated. Del Negro and Otrok

(2007) study whether such heterogeneous increases in house prices reflect a national phenomenon

or constitute local bubbles driven by local factors. For the period from 2001 to 2005, the authors

find that the increase in house prices is a national phenomenon, while in previous periods house

prices were mainly driven by local components. The local effects of monetary policy are also studied

by Francis, Owyang, and Sekhposyan (2011), who find significant variation among MSA regions in

the response of employment to monetary policy shocks. Vansteenkiste (2007) studies interest rate

shocks on regional U.S. house prices as well as spillovers of house price shocks. She finds that shocks

are state-dependent and occur in states with low land supply elasticity. Similar to Vansteenkiste

(2007), Saks (2008) looks into the causes of heterogeneity in house price appreciations, although in a

more systematic way. Saks (2008) considers both national and local changes in economic conditions

and their interaction. As such it is clearly the study closest to our. Saks (2008) is restricted to

local variables available at the time, which includes per capita income and industry composition,

but excludes variables that have become available only since, such as housing supply elasticities,

percentages of developable land, quality of life, etc. We also note that the work is based on annual

data, ends in 2006, and uses basic regression techniques, for which issues of unobserved variables

and underlying non-deterministic trends may play a role.

We premise our analysis on the idea that expansionary monetary policy raises the demand for

houses through at least two channels. First, a lower interest rate reduces the cost of financing a home.

Second, the increased availability of credit, which was a major component of the monetary easing

after 2001, makes it easier to obtain financing at any interest rate. Rather than trying to determine

which of those channels has been more important for the U.S., our focus is on the heterogeneity
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in the response to monetary expansion, and in particular on the economic reasons for the observed

heterogeneity. Given that there has been very significant financial market integration (see Landier,

Sraer, and Thesmar, 2013), significant differences in house price inflation appear worthy of an

explanation. Vansteenkiste (2007) and Saks (2008) have already shown the importance of land

supply elasticities and some other factors. We expand on their work.

We contribute to the literature in several directions. First, we identify a number of local demand

and supply factors that have not been used, for example by Saks (2008), in the context of explaining

the differences in house price appreciations across MSAs in response to a country wide change in

monetary policy. This includes in particular factors that do not differ much or at all over time,

but that vary widely across MSAs. Second, we expand our data set to after the economic crisis to

capture not only the increase in house price inflation, but also its subsequent decrease. This should

make our analysis more general as it covers several monetary expansions and contractions. Third,

we suggest an estimation methodology that allows us (a) to explicitly incorporate local demand

and supply factors via interaction terms, and (b) to capture issues of non-stationarity, pre-existing

trends and omitted variables via the specification of a flexible underlying stochastic trend in the

context of a state-space estimation approach. Finally, we check our results with two different types

of data sets on housing prices to confirm the plausibility of our results.

3 Identification Strategy

We propose to identify the reasons why MSAs responded so differently in terms of house price

inflation to changes in monetary policy. We utilize both a univariate and a multivariate state-space

model, in which we allow the federal funds rate to differ in its impact at the MSA level through a

number of interaction terms with local demand and supply conditions that change little or not at

all over time. We also provide a number of robustness checks using alternative, more traditional

methodologies.

The choice of a state-space model has some advantages. First, it allows us to capture pre-existing

trends that do not follow simple deterministic trend patterns of the linear or quadratic type with

relative ease. Compared to cointegration methods, no formal pre-testing is needed and issues of

unknown structural breaks do not typically weigh heavily on the results. The stochastic trend
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specification, which is a typical component of state-space models, is not only flexible enough to

capture complicated underlying trends, it can also absorb the impact of variables that are unobserved

and that result in unexpected jumps of the dependent variable. This is important because in trying

to uncover the factors that drive local house price inflation rates one faces two problems that are not

atypical for work with regional data: first, the economic theory is far from being fully developed,

which makes it difficult to theoretically identify all relevant variables; second, variables that are

known to play a role according to theoretical reasoning may not be available for every time period.

In either case, the impact of unobserved variables may show up in the residual terms of standard

regression approaches and cause endogeneity issues. In the state-space modeling framework that

we employ, the impact of these unobserved variables is largely captured by stochastic components,

such as stochastic trends, that are explicitly estimated.

3.1 State-Space Modeling

We utilize two alternative state-space models, a univariate one and a multivariate one. We illustrate

our basic estimation approach with the simplest possible multivariate set-up, a model with just one

right-hand side variable x. The multivariate model is composed of two matrix equations, one for

the observation equation, and one for the state equation. For time period t, the set of observation

equations can be written as


y1
y2
...
yN


t

=


1
1
...
1

µt +

a1
a2
...
aN

xt−k +

w1

w2
...
wN


t

, (1)

where the dependent variable vector consists of observations on N different MSAs (i = 1, . . . , N) for

each time period t. The right-hand side decomposes the dependent variable into (i) an unobserved

stochastic trend (µt) that is common to all N MSAs,5 (ii) an exogenous policy variable that enters

with lag k (xt−k) and that is associated with N MSA-specific reaction coefficients, and (iii) an
5We also note in this context that the stochastic trend is not associated with any coefficient. The parameter to

estimate for µt is the variance associated with the particular specification of µt. This variance is also known as a
hyper-parameter. For complicated versions of the trend, there may be more than just one variance (hyper-parameter)
that needs estimation.
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MSA-specific white-noise error term (wit) with zero mean and constant variance.

The corresponding state equation identifies the evolution of the state variable µt over time. We

choose a simple random walk to represent µt,

µt = µt−1 + vt, (2)

where vt is a white-noise error term with zero mean and common variance across the N MSAs. The

presence of µt in Equation (1) removes any random-walk like trend from y or x.6 Given that the

dependent variable is an inflation rate, which is a variable without a persistent trend, a random

walk specification for the stochastic trend µt is likely to be sufficiently flexible. If we wanted to

explain a variable with a highly persistent trend, such as house prices as opposed to house price

inflation, a simple random walk would not be an appropriate specification, but a model with an

explicit growth component would be required. These types of models typically add a slope or drift

term to Equation (2), which itself can evolve as a random walk.7

We assume a separate variance Ri with i = 1, . . . , N for each of the N MSAs in Equation (1),

with all covariances set to zero,8

Ewtw
′
t =


R1 0 0 0
0 R2 0 0
...

...
...

...
0 0 0 RN

 , (3)

where Ri is the observation variance of MSA i. A much stricter assumption would be a variance

that is identical across all N MSAs. The corresponding set of restrictions is easily tested with a

likelihood ratio test. Because for all models in this study, this restriction is rejected, we will not

further consider this case. The stochastic trend specified by Equation (2) is assumed to have a

constant variance across time (Q), which is different from and uncorrelated with those of Equation
6This can be thought of as akin to an application of the Frisch-Waugh-Lovell theorem to Equation (1).
7These more complex trend specifications are known as local linear trend and smooth trend models. More on these

specifications is contained in Harvey (1989) and in Durbin and Koopman (2001). An introduction from a practical
estimation perspective is given in Commandeur and Koopman (2007).

8This assumption implies the estimation of N equations that are related via cross-equation parameter restrictions,
but unrelated via the error terms. Ideally, one would want to test the assumption of zero covariances relative to
a model with a fully specified covariance matrix. However, for our data set, the number of degrees of freedom is
insufficient for reliable estimates.
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(1),

Ev′tvt = Q. (4)

The model consisting of Equations (1) through (4) implies that any non-random variation across

MSAs in the dependent variable that is tied to variable x is absorbed by the coefficient vector a in

Equation (1). Since the impact of common national trends and events are taken up by the stochastic

trend µt, any differences in the coefficient vector a across the N MSAs should be due to differences

in conditions at the MSA level. Local conditions affecting the dependent variable across the N

equations, but not moderated by the policy variable xt−k, enter through the error term w.

Local conditions may consist of a variety of demand and supply factors, some influencing the

impact of x, others being independent of x ; some varying over time, while others showing little or

no time variation. The focus of this paper is on those factors that influence the impact of x on y but

that show little or no time variation. In a typical panel data framework these factors, which may

differ widely across cross-section units, are accounted for by unit fixed effects, which are typically

not made explicit. In Equation (1), we have a similar issue: we know that differences in the elements

of the coefficient vector a across MSAs result from differences in local conditions, but Equation (1)

does not explicitly reveal these factors. To make the local demand and supply factors visible, we

amend Equation (1) with a set of interaction terms to identify the driving forces at the local level.

Consider for that purpose the following modification of Equation (1),



y1

y2
...

yN


t

=



1

1

...

1


µt +



β

β

...

β


xt−k + xt−k



z1,1 z2,1 · · · zp,1

z1,2 z2,2 · · · zp,2
...

...
...

...

z1,N z2,N · · · zp,N





b1

b2
...

bp


+



w1

w2

...

wN


t

, (5)

where we introduce interaction terms between variable x, measured at time t− k, and the elements

of a matrix z consisting of N × p elements. In Equation (5), z consists of p different variables

(i = 1, . . . , p). We assume that each of the p variables varies across the N MSAs but not over time.9

In contrast to Equation (1), the coefficient vector in front of variable x in Equation (5) consists of a
9The model is flexible enough to allow the variables making up z to vary not only by MSA but also over time.

But that case is standard and causes no estimation issues.
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single parameter (β) , which does not vary by MSA. The local variation in Equation (5) is captured

by the interaction terms between the p row-elements of z and x. Each of the p variables making

up each row of z has its own estimated coefficient (bi). Taken together, the p row-elements of z are

the driving forces behind the different responses of the N MSAs to a change in variable x. Based

on estimates of Equation (5) we can predict to what extent MSAs with different time-invariant

characteristics and, therefore, different z values react differently to a change in the policy variable

x. The prediction depends for each MSA on the partial derivative of the dependent variable with

respect to variable x. This derivative depends for each MSA on β, vector b, and the MSA-specific

values taken on by z.

The multivariate model consisting of either Equations (1) to (4) or Equations (2) to (5) can

be estimated only in situations where the number of time series observations T per unit (MSA

in our case) is significantly larger than the number of cross-section units N. This applies in the

present study for the Case/Shiller data set, which contains close to T = 300 monthly observations

for N = 19 usable MSAs. However, it does not apply for the FHFA data set, which contains less

than T = 100 quarterly observations for N = 94 usable MSAs. If one wants to take advantage of

the flexible, stochastic trend specifications of state-space models, the FHFA data set would force a

move from a multivariate model to a univariate model. Such a model could be specified as



y1,1
y2,1
...

yT,1
y1,2
y2,2
...

yT,2
...

yT,N



=



µ1
µ2
...
µT
µT+1

µT+2
...

µ2T
...

µNT



+ γ



1
2
...
T
1
2
...
T
...
T



+ β



x1
x2
...
xT
x1
x2
...
xT
...
xT



(6)

12



+



x1z1,1 x1z2,1 · · · x1zp,1
x2z1,1 x2z2,1 · · · x2zp,1

...
...

...
...

xT z1,1 xT z2,1 · · · xT zp,1
x1z1,2 x1z2,1 · · · x1zp,2
x2z1,2 x2z2,1 · · · x2zp,2

...
...

...
...

xT z1,2 xT z2,1 · · · xT zp,2
...

...
...

...
xT z1,N xT z2,N · · · xT zp,N




b1
b2
...
bp

+



w1

w2
...
wT

wT+1

wT+2
...

w2T
...

wNT



,

where variables x and z and the stochastic terms z and w have the same meaning as in Equation

(5).10 Variable x varies over time, but not by MSA; variables zj do not vary over time, but by

MSA. What makes Equation (6) different from Equations (1) and (5) is the fact that the model

is reduced from N equations to just one. In particular, the first T observations belong to MSA

1, the next T observations to MSA 2, and so forth. As in a common panel data format, the

dependent variable consists of N stacked cross-sections, each with T observations, for a total of

T × N observations. In the multivariate format, by contrast, the total number of observations

equals T. The key difference between Equation (6) and a standard panel data set-up is the presence

of a flexible, stochastic trend.11 Equation (6) assumes a common variance for the stochastic trend

µt across all N cross-section units, which is the same assumption as that for the multivariate

models. The stacking into one T × N vector increases the number of observations on which to

estimate the variance parameter Q of Equation (2) by an order of magnitude. But it also adds

the complication that the first time series value of µt of cross-section unit j refers back to the

last time series observation of cross-section unit j − 1 by the assumption that µt follows a random

walk. We address this complication by adding a deterministic time trend to Equation (6). This

time trend is a standard T × N vector with estimated parameter γ. It can be thought of as

deterministically resetting the stochastic time trend at the beginning of each new cross-section. We

note that, compared to the multivariate model consisting of Equations (2) to (5), the univariate

model centered on Equation (6) contains only one estimated variance for the T ×N error term w.

This is equivalent to the restriction R1 = R2 = · · · = RN in Equation (3).
10To avoid notational complexity, we ignore the fact that variable x enters the equation with a lag.
11As with panel data, one needs to take care that the k lags of independent variable x do not extend into unrelated

cross-section units. This requires omitting the first k time series observations for each of the N cross-section units.
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3.2 Robustness Checks

Given that the approach encapsulated by Equations (1), (5) and (6) is uncommon, we offer two

sensitivity checks, which should corroborate the importance of the variables contained in z. As a

first plausibility check, we estimate the model made up by Equations (1) to (4) and analyze to what

extent the elements of vector a vary by known characteristics of the N MSAs. This is accomplished

by running simple least squares regressions of the type

ai = δ0 +
p∑

j=1

δjzj,i + εi, (7)

where the elements of ai in Equation (1) are explained by the p variables contained in z that vary

by MSA i but not over time. Due to the fact that the variation in the values of ai are systematically

related to the variables in z, the estimated coefficients δj should be empirically consistent with the

estimates of bi in Equations (5) and (6). To the extent that the number of MSAs (N ) and, therefore,

the number of observations in Equation (7) is small, we can only expect a rough approximation of

the results obtained from Equations (5) and (6).

A more elaborate robustness check makes use of a panel data approach equivalent to that of

Equation (6). Consistent with a traditional panel data estimator, the stochastic trend µt is replaced

by unit fixed-effects (λN ) and a second-order time trend,



y1,1
y2,1
...

yT,1
y1,2
y2,2
...

yT,2
...

yT,N



=



λ1
λ1

λ1
λ2
λ2

λ2

λN


+ ϑ



1
2
...
T
1
2
...
T
...
T



+ θ



1
22

...
T 2

1
22

...
T 2

...
T 2



+ a



x1
x2
...
xT
x1
x2
...
xT
...
xT



+ (8)
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+



x1z1,1 x1z2,1 · · · x1zp,1
x2z1,1 x2z2,1 · · · x2zp,1

...
...

...
...

xT z1,1 xT z2,1 · · · xT zp,1
x1z1,2 x1z2,1 · · · x1zp,2
x2z1,2 x2z2,1 · · · x2zp,2

...
...

...
...

xT z1,2 xT z2,1 · · · xT zp,2
...

...
...

...
xT z1,N xT z2,N · · · xT zp,N




b1
b2
...
bp

+



w1

w2
...
wT

wT+1

wT+2
...

w2T
...

wNT



.

All MSAs are assumed to have the same response parameter a for variable x and bj with i = 1, ..., p

for the p interaction terms between x and z. Note that variable x varies over time, but not by MSA,

whereas variables zj do not vary over time, but by MSA.

The key point for the interpretation of Equations (6) and (8) is that vector b, along with the

matrix of interaction terms, allows x to have a differential impact by MSA. Vector b weighs the

impact of x by the MSA-specific characteristics zj . As long as the zj vary across MSAs, the impact

of x will vary. Which of the elements of b is statistically significant is an empirical question. For the

estimates of Equation (8) to be fully consistent with those of Equation (6), we would expect to see

the same elements of zj to be statistically significant in both Equations (6) and (8). To check for

robustness of the estimates of Equation (8), we make alternative assumptions regarding the error

term. The assumptions are those appropriate for panel data with large T and small N.12

4 Data

We employ monthly seasonally adjusted house price data13 for the period 1992:06 to 2014:12 for

19 of the 20 MSAs for which Case/Shiller (CS) price indices are available.14 The CS indices

apply a robust value-weighted method based on (repeat) sales transactions. This methodology
12The STATA input code for the different estimators are available at http://www....
13Using seasonally unadjusted data would add a seasonal component to Equations (1) and (5) and an additional

state equation.
14Because the series for Dallas starts in 2000 we exclude this MSA from our sample. The Case/Shiller index is a

monthly index for the home prices in 20 MSAs of the U.S.
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employed by the CS indices reduces biases stemming from pricing anomalies, physical changes,

local neighborhood effects, high turnover frequency, and time between transactions (see Miao,

Ramchander, and Simpson, 2011; Kallberg, Liu, and Pasquariello, 2013).

For the purpose of checking the sensitivity of our results we also employ seasonally adjusted

transaction sales price indices from the Federal Housing Finance Agency (FHFA) for the largest 100

MSA.15 These indices are available on a quarterly basis. The attraction of the FHFA data lies in

the fact that far more MSAs are covered than by the CS data. We select 94 MSAs for which we

are able to obtain critical data to construct our interaction terms. The time period covered by our

FHFA sample matches that for the CS data, the third quarter of 1992 to the fourth quarter of 2014.

Extending the sample period to 2014 rather than cutting it off after the housing price crash

around 2007 has several advantages. First, we cover different phases of the business and real estate

cycle, and thus, can account for asymmetries in the transmission channels of local demand and

supply variables. Second, a larger sample allows us to include different MSA characteristics in the

same specification without causing a simultaneity bias or an omitted variable bias, when they are

considered separately.16 Finally, we increase the number of interest rate regimes, ranging from high

interest rates at the beginning to very low interest rate levels at the end of our sample period.

We use the effective, seasonally unadjusted monthly federal funds rate as our monetary policy

variable rather than local interest rates or mortgage market related variables because these measures

are unlikely to be exogenous. As we make use of monthly or quarterly data, lagged relationships

necessarily play a role if one wants to identify policy impacts. It takes a while for the federal funds

rate to have an impact on house price inflation. Monetary policy is generally thought to have a lag

of at least 6 months on CPI inflation. House price inflation may respond even more sluggishly than

CPI inflation because transactions in houses tend to be infrequent relative to those in goods and

services. In sum, we need to incorporate lags into the analysis because the federal funds rate at

time t will influence house price inflation only at time t+ k. We proceed by picking alternative lag

lengths for the federal funds rate and by estimating a separate model for each chosen lag length.17

15http://www.fhfa.gov/DataTools/Downloads/Documents/HPI/HPI_PO_metro.txt.
16An example for these effects is given by Hilber and Robert-Nicoud (2013) and Gyourko, Mayer, and Sinai (2013),

who show that housing supply becomes more inelastic in locations where demand is high. Similarly, population
growth is not entirely exogenous, but can be considered as a function of both housing supply and local demand.

17Lag length implies in this context the maximum lag length, without any intermediate lags as in a vector
autoregressive model.
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We check the sensitivity of the chosen lag length (k in Equation (1)) by using lags at 8, 10, 12, 14,

and 16 monthly lags and 2, 4, and 6 quarterly lags.18

The dependent variable is defined as house price inflation. We construct it by taking the

log difference of the monthly (CS data) or quarterly (FHFA data) house price index. The key

explanatory variable is the federal funds rate in logarithmic form.19 It is interacted with variables

that capture local demand and supply characteristics, such as population growth or the percentage

of undevelopable land. These local conditions do not vary over time but only across MSAs.20 Their

role in our study and their definitions are discussed next.

4.1 Local Demand Factors

Even without a monetary expansion, strong population growth will raise housing demand. Mulder

(2006) describes the complex relationship between population and housing. Assuming that the house

supply elasticity is not infinite, strong population growth should result in house price inflation.21

During a period of monetary expansion, MSAs with strong population growth should, therefore,

experience above average house price inflation. Leading up to 2006, this was the case, for example,

for Las Vegas and Phoenix, both with average annual population growth rates in excess of three

percent per year (Appendix Table A1). We construct for our analysis two population growth rates,

one for the time period from 1995 to 2008 (pop9508) and another for the period from 2008 to 2013

(pop0813). Both are constructed from the Bureau of Economic Analysis Regional Data tables.

Separating the time period before the economic downturn in 2008 from the time period afterwards
18We report estimates only for lags 8, 12, and 16 monthly lags.
19A common assumption is that a change in the interest rate has a one-time impact on house prices. This is

what we would expect from the user cost of capital equation or a discounted cash flow model. However, from the
empirical examination of regional house price series, we recognize a long lasting period of continuously increasing (or
decreasing) prices, which reflects a change in the slope rather than an immediate shift in the price level. In contrast,
the time series of the federal funds rate shows short-term level shifts between a few interest rate regimes. Hence, we
specify the dependent variable in log differences, i.e. as growth rates, and the federal funds rate in logarithmic form.
In this context, note further that the state-space approach is flexible enough to account for potential non-stationarity
in either of the variables. We also considered using first differences (with or without logs) of the federal funds rate.
We ran standard vector autoregressions on house price inflation (quarterly 10-city CS data) and the federal funds rate
(level and first differences) for alternative lag lengths. The results showed very decisively that house price inflation
is Granger caused only by the (log) level of the federal funds rate, not by its first differences (in logs).

20The MSA-specific values of these variables for the CS and FHFA data are listed in Tables A1 and A2 of the
Appendix.

21See, for example, Saiz (2003, 2007) who demonstrates that prices and rents in housing markets that are
characterized by immigrant population shocks undergo price appreciations, which then have an impact on labor
mobility of current residents (Ottoviano and Peri, 2007).
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allows us to capture the considerable changes in regional and local population growth patterns

before and after 2008.22

Per capita income growth is another local factor that may increase local housing demand

irrespective of any country-wide monetary expansion (Saks, 2008). Income growth may occur locally

because of a booming sector, such as IT or mining operations. The per capita income growth may

induce residents to upgrade or try to buy second homes, thereby raising housing demand. If a

country-wide monetary expansion hits an MSA with these conditions, we expect higher rates of

house price appreciation than in areas with declining per capita incomes. To identify such effects,

we construct two per capita personal income growth rates in parallel to the two population growth

rates, one for the time period from 1995 to 2008 (inc9508) and another for the period from 2008 to

2013 (inc0813). The data come from the same BEA source as the income growth rates.

Albouy (2012) finds amenities, such as mild seasons, sunshine, hills, coastal proximity, safety,

clean air, arts and culture, are key drivers of the quality of life variable (ql) he constructs. Many

of the MSAs that saw dramatic increases in home prices in the run-up prior to 2007 rank highly on

these quality of life criteria. This suggests that a more formal test of the quality of life link between

prices in different areas is warranted. We note that Albouy’s quality of life ranking cannot be

classified as a pure demand-side factor since it also includes geographic constraints, such as coastal

proximity and the steepness of land.

4.2 Local Supply Factors

Glaeser, Gyourko, and Saks (2005) emphasize that housing supply constraints arise because of

changes in regulatory regimes rather than the lack of developable land. Regulatory barriers to

development are related to zoning, which explicitly limits the availability of land, and other land-rela-

ted regulatory procedures and building restrictions, such as the political process of approval. Current

residents often try to restrict zoning via organized community groups because new construction

increases the supply of housing and will likely decrease both home values and rents (Glaeser,

Gyourko, and Saks, 2005). This is particularly prevalent in high income areas, where households

are willing to pay for high-amenity and low-density neighborhoods.
22For example, a large number of migrant workers from Latin America returned to their home countries as economic

growth stalled and GDP started to decline in 2008.
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Glaeser, Gyourko, and Saiz (2008) demonstrate the pivotal role of housing supply in shaping the

course of house price bubbles. In particular, under the assumption of irrational exuberance, supply

inelastic MSAs have larger price increases along with a smaller impact on the housing stock and

longer lasting bubbles. In contrast, U.S. cities with more elastic housing supplies have fewer and

shorter bubbles, but tend to overbuild in response to bubbles. Hence, in case of inelastic supply an

endogenous bubble acts as a short-term demand shock, where rising demand translates into rising

prices. Glaeser, Gyourko, and Saiz (2008) find that average estimated real prices appreciated by

81% in MSAs with an inelastic housing supply as compared to 34% in MSAs, where the housing

supply was relatively elastic during the boom period 1997 to 2006.

According to Saiz (2010), housing supply shocks account for most of the differences in the

pricing of home values across cities. He emphasizes that the value of the housing supply elasticity is

related to both physical and regulatory constraints. Physical constraints arise from the scarcity of

developable land, which can be explained by geographic factors, such as the proximity to the ocean,

a lake or a river, steep topography, as well as wetlands.

We make use of three different proxies for housing supply conditions. First, we use the measures

of supply side conditions developed by Saiz (2010), which are (a) the percentage of undevelopable

land and (b) a measure of housing supply elasticity. Saiz (2010) estimated undevelopable land

(ud) based on adjacency to the ocean or great lakes, area lost to minor water bodies, wetlands,

permanent ice caps, bare-rock desert areas, and irreclaimable land with slopes above 15 degrees.

This supply measure is exogenous from market conditions since it is based solely on natural

land constraints. The supply elasticity proxy (se) is based on a function of both physical and

regulatory constraints. Because of the severe endogeneity of regulation, Saiz (2010) estimated a

simultaneous equation system that provides local supply elasticities by jointly determining housing

supply, demand, and regulations. Hence, market clearing prices and quantities in final equilibrium

reflect the final regulation level. Our third supply proxy is the Wharton Residential Land Use

Regulatory Index (WRLURI) developed by Gyourko, Saiz, and Summers (2008). Consistent with

the existing literature, we expect that MSAs with tight supply conditions are more likely to react

to monetary expansions with above average rates of house price appreciation.
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5 Estimation Results

The estimation results for the multivariate model consisting of Equations (1) to (4) are presented

in Table 1. The logartihm of the federal funds rate serves as our only exogenous variable (x ). There

are no MSA-specific characteristics on the right-hand side of the equation system. However, the

coefficients of the federal funds rate are allowed to vary by MSA (ai). The multivariate model is

estimated for a number of different lag lengths of the federal funds rate.23 All models are estimated

with just one lag of the federal funds rate, which is alternatively placed at 8, 12 and 16 months

to account for the well-known fact that a change in monetary policy takes half a year or longer to

be visible in output or price statistics. Based on the log-likelihood values, the statistical fit of the

multivariate models tends to improve as the lag length increases from 8 to 16 months. However, the

MSA-specific coefficients (ai) tend to be larger in absolute terms and statistically more significant

at a lag length of 8 months than at longer lag lengths.24 We note the large absolute parameter

estimates of MSAs with well known price run-ups before the 2007/08 house price crash, such as Las

Vegas, Phoenix or Miami.

The economic interpretation of the coefficients presented in Table 1 is as follows. The estimated

coefficient for Phoenix at a lag length of 8 months of -0.4 implies that a drop in the log of the federal

funds rate by one unit, which is equivalent to 2.7 percentage points for the level of the federal funds

rate, raises the monthly house price inflation rate by four tenth of 1 percent. That translates into a

change of 4.8 percentage points at an annual rate, say from a house price inflation rate of 3 percent

to one of 7.8 percent.25

Following Equation (7) we pool the estimated coefficients of Table 1 across the 19 MSAs and

regress them by least squares on the MSA-specific values of the variables in vector z, which play a

critical role in Equations (5), (6), and (8). Vector z consists of eight variables that vary by MSA,
23Note that several studies highlight the importance of accounting for specific price dynamics in housing markets

by including lagged dependent variables (see, e.g., Case and Shiller (1989) and Glaeser et al. (2014)). In our model,
however, the persistence in house price changes, i.e. in our left-hand side variable, is captured by the stochastic
trend component. Hence, we refrain from modeling house price dynamics by lagged dependent variables separately.
In our sensitivity tests based on panel regression we use feasible generalized least squares estimators to correct for
autocorrelation. Similarly, one can argue that the federal funds rate is highly persistent even for the long time period
considered, which might translate into correlated errors. The potential autocorrelation in this exogenous variable is
also captured in the stochastic trend component of our state-space specification.

24The loglikelihood values reflect the fact that the models’ hyper-parameters tend to fit better at longer lags.
25For a drop in the log of the federal funds rate larger than 1, say 1.58, which is the standard deviation of the log

of the federal funds rate over the sample period from 1992:06 to 2014:12, the predicted change in the house price
inflation rate would be 7.6 percentage points. This assumption underlies the summary Table 6 of this study.
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but not across time: the percentage of undevelopable land (ud), the house supply elasticity (se),

the Wharton Residential Land Use Regulatory Index (wr), quality of life (ql), and the growth rates

of population (pop9508, inc9508) and per capita income (inc9508, inc0813) over the time periods

from 1995 to 2008 and from 2008 to 2013. We distinguish between pre- and past-2008 phases

to control for the impact of up- and downward movements in the business cycle and for the fact

that MSAs with highly pro-cyclical industries tend to be more sensitive to interest rates. As a

consequence, in regions with high income and population growth, changes in interest rates can be

offset by changes in expected future rent growth, so that the effective impact of monetary policy

might be underestimated.

Tabe 2 presents the results of this exploratory data analysis. Models 1 and 2 contain just

two variables, one demand variable and one supply variable. The demand variable is the rate of

population growth from 1995 to 2008 (pop9508). The two supply variables are se and ud. Both

models can explain a fair amount of the variation in the responsiveness across MSAs of house price

inflation to changes in the federal funds rate. The estimated coefficients also have the expected

sign. More population growth and a larger share of undevelopable land raise the responsiveness of

house price inflation to changes in the federal funds rate, while a higher supply elasticity lowers

it. Adding other MSA-specific variables has little impact on the estimates according to a number

of variable addition tests. Overall, Table 2 suggests that differences in demand and supply factors

across MSAs may indeed play a role in explaining why MSAs respond differently with their house

price inflation rates to changes in monetary policy.

The calculations underlying Table 3 involve the multivariate model consisting of Equations (2)

to (5). In contrast to Table 1 and Equation (1), the coefficients of the federal funds rate are

constrained to be identical across MSAs. Instead, interaction terms between the federal funds

rate and MSA-specific demand and supply characteristics are added as separate variables. In line

with the results of Table 2, all models in Table 3 contain a number of both demand and supply

characteristics. Note that the demand and supply variables only appear as part of the interaction

terms, but do not enter as individual explanatory variables because they do not vary over time.

Similar to Table 1, the models containing a lag length of 16 months fit the best based on the

log likelihood values. Comparing columns reveals a rather similar pattern across lag lenghts. The

models shown in Columns (1) and (3) differ only in their choice of se or ud as supply variables. Based
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on the exploratory results of Table 2, one would expect the models based on se to fit somewhat

better than those based on ud. However, that is not the case. The models containing ud in Columns

(3) and (4) clearly dominate those containing se in Columns (1) and (2). Another point of interest

is the relative significance of variables wr and ql. As ql is added to the model containing ud and

wr in Column (4), the variable wr turns insignificant, which is suggestive of collinearity issues.

Overall, the model with a lag length of 16 months in Column (4) fits the best based on the log

likelihood criterion.26 This model, together with the other two models in Column (4), suggest that

the demand factor population growth, the supply factor undevelopable land, and the factor quality

of life influences how the federal funds rate impacts the house price inflation rate for a particular

MSA. This largely corroborates the exploratory analysis summarized in Table 2.

To derive from the estimates of Table 3 the response of the house price inflation rate of an

individual MSA to a change in the federal funds, we take the partial derivative with respect to

the log of the federal funds rate and evaluate the resulting terms at the MSA-specific values of the

demand and supply factors, which are specified in Appendix Table A1. For example, for a lag length

of 16 months and the model of Column (4), a unit change in the log of the federal funds rate can

be calculated to have the following impact on the inflation rate:

d [d ln p]

d ln ff
= 0.1083− 0.3948 (ud) + 0.0173 (wr)− 0.001 (ql)− 0.0396 (pop9508)− 0.0257 (pop0813) ,

where ff stands for the federal funds rate and d ln p is the dependent variable. Employing the

demand and supply factors for Phoenix in the above equation and multiplying the result by 12 (to

convert to an annual rate) results in a value of −1.82. This means that the annualized house price

inflation rate in the Phoenix MSA is predicted to increase by 1.82 percentage points (e.g., from 3%

to 4.82% per annum) for a unit decrease in the log of the federal funds rate, where the latter is

equivalent to a decrease in the level of the federal funds rate by 2.7 percentage points, e.g., from

5% to 2.3%.

Table 4 is based on estimates of Equations (2), (4), and (6), plus the assumption that Ri = R

in Equation (3), for all i. With regard to variable selection, the model specifications are similar to
26We estimated a number of additional models, including one that eliminated wr from the models in Column (4)

and added instead the two income terms inc9508 and inc0813. The income terms turned out to be statistically
significant.
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those for the multivariate model, except that we add in Column (4) a model with both population

and income growth terms. Table 4 only reports the results for the case of a lag length of 8 months,

which dominates the cases of 12 and 16 months for this model. The estimation results are similar to

those of Table 3. The estimates in Column (4) show signs of collinearity. Based on a likelihood ratio

test, the model in Column (3) is preferred by the data. Taking the partial derivative with respect

to the log of the federal funds rate for this model, evaluating the MSA-specific factors at the values

of Phoenix (Appendix Table A1) and multiplying by 1 results in a value of −4.73. This implies an

increase in the annualized house price inflation rate in the Phoenix MSA of 4.73 percentage points

(e.g., from 3% to 7.73% per annum) for a unit decrease in the log of the federal funds rate. This

is more than twice the increase predicted by the estimates resulting from Table 3. Although the

difference in values for Phoenix is larger between Tables 3 and 4 than for other MSAs, there is

a tendency for the univariate model estimates to predict a larger response than the multivariate

model. There is a relatively simple reason for this phenomenon. Some of the MSA-specific variation

in house price inflation that shows up in the larger absolute values of the estimated coefficients of

the univariate model is captured by the MSA-specific error terms Ri in the multivariate model.

We turn next to a sensitivity check that uses a panel estimation framework rather than a

state-space approach. Estimation proceeds according to Equation (8). A key difference to the

state-space approach is the way in which pre-existing trends are captured. Instead of a flexible

stochastic trend, we now use a far less flexible deterministic quadratic time trend model, with the

parameters assumed to be identical for all MSAs. Time-fixed effects turns out to be practically

infeasible given the fact that there are 200 time series observation per cross section. Given the

large number of time series observations relative to the number of cross-sections (19), we use

a feasible generalized least squares estimator and correct for autocorrelation using both a single

autocorrelation parameter for the entire sample on the one hand, and 19 MSA-specific parameters

on the other. The estimation results are presented in Table 5. Only the estimates for a lag length

of 16 months are shown, as these dominate the results for lag lenghts of 8 and 12. The coefficient

estimates of Table 5 follow the pattern of Table 4. Compared to Table 4, however, there are far fewer

statistically significant parameter estimates. The model in Column (3) is the one most consistent

with the data based on statistical grounds.

Table 6 provides a summary of the estimation results from Tables 1, 3, 4, and 5. All estimates
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are changes in the house price inflation rate at an annual rate (e.g., −4.0 means that the annual

inflation rate drops by 4 percentage points, say from 10% to 6%) in response to a one standard

deviation change in the log of the federal funds rate. The latter is 1.58 for the sample period, which

translates into a change in the level of the federal funds rate by 4.85 percentage points. A change

of this magnitude or larger happened three times during the sample period and each time within a

few months: after 2001, after 2004, and around 2008.

The entries in Column (1) of Table 6 are based on a simple average of the coefficient estimates

of Table 1, which is then multiplied by 12 and 1.58. The results shown in Columns (2) to (4) make

use of the estimates from Tables 3 to 5 that we consider the most consistent with the data. In

contrast to the results of Column (1), the estimates shown in Columns (2) to (4) are evaluated at

the MSA-specific demand and supply conditions given in Appendix Table A1. Column (5) averages

the values of the state-space models in Columns (1) to (3). The 19 MSAs are sorted according to

the average values in Column (5).

The rank order of MSAs affected the most by changes in the federal funds rate is consistent

with our premise that local demand and supply factors are key drivers of an MSA’s response to

changes in monetary policy. This is apparent if one considers, for example, the first ten MSAs listed

in Table 6 and the characteristics associated with these MSAs (Appendix Table A1). Both Las

Vegas and Phoenix experienced an extraordinary increase in population from 1995 to 2008, with

Atlanta following closely and with Minneapolis not far behind. For the coastal cities of Miami, San

Francisco and Los Angeles, by contrast, the percentage of undevelopable land plays the key role.

Seattle and Tampa are subject to both high population growth and limited developable land.

Table 6 reveals that the multivariate state-space estimates tend to predict a lower average

response of house price inflation to a change in the federal funds rate than the univariate model or

the panel data estimate. Across all state-space models, the predicted variation of the response of

inflation across MSAs is larger than that for the panel data models. At a value of 2.48, the standard

deviation of the univariate state-space model is more than twice the size of the variation observed

for the panel data model. We note in this context that the relatively low variation across MSAs for

the panel data model changes little regardless of the particular type of panel data estimator that is

used. But one can observe the following trend: the fewer parameters one uses to capture differences

in error variation across MSAs, the larger is the absolute predicted response to changes in the federal
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funds rate and the larger is also the variation of this response across MSAs. This result also holds,

although in somewhat muted form, for the estimates of the state-space models. This brings up a key

point regarding the essence of the interaction type model suggested in Equations (5), (6) and (8).

If one accounts for differences in the policy response of MSAs by estimating generic MSA-specific

parameters, such as MSA-specific autocorrelation coefficients, variances, or intercept terms (as in

fixed effects models), one can reduce the importance of the interaction terms. But in doing that,

one is moving away from an economic explanation of why MSAs react so differently to monetary

policy to an explanation that is based purely on statistical grounds. That would be contrary to the

purpose of this study, which show a way to reveal the economic reasons for the differences.

Tables 7 to 9 provide a sensitivity check of the results for a set of 94 MSAs and quarterly

FHFA house price data over the time period from 1992:3 to 2014:4. Given that there are only

96 observations over time, it is not feasible to estimate a multivariate state-space model with 94

separate MSA equations. We are therefore limited to a univariate state-space model and a panel

data estimator. The univariate results are contained in Table 7. The panel data estimates are shown

in Table 8. Table 9 provides a summary of the results similar in spirit to that of Table 6.

Table 7 reveals a very strong response to the supply side variable ud. Also consistently strong

is the response to the variable capturing land use restrictions (wr). This is a variable that is far

less convincing as a predictor of differences in the response across MSAs in the smaller Case/Shiller

sample. By contrast, the strong showing of population growth before the house price crash of

2007/8 is very similar to that found for the Case/Shiller data. Table 8 is consistent with Table

7 and with the Case/Shiller results in that the degree of undevelopable land (ud) and population

growth (pop9508) are important predictors. But unlike the results of Table 7, quality of life (ql) is

statistically far more important than the index of land use restrictions (wr). In addition, there is

evidence that income growth over the time period from 1995 to 2008 is important to understanding

the differences in the response of MSAs to changes in monetary policy.

Table 9 contains a summary of the results from both Tables 7 and 8. The MSAs are ordered

from large to low response by the impact estimated for the univariate state-space model. The mean

responses of the univariate state-space model and the panel data estimator are both quite similar

at around -4. This is somewhat below the corresponding values of Columns (3) and (4) of Table 6.

But that is not surprising given that the FHFA data contain many MSAs with relatively low house
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price inflation rates before 2007 and correspondingly low to moderate values for the MSA-specific

demand and supply factors (Appendix Table A2). The standard deviation of the response across

MSAs to a change in monetary policy is unusually low (0.52) for the panel estimator, not only

compared to the univariate state-space model in Table 9, but also compared to the values shown for

the panel estimator in Table 6. By contrast, the variation estimated for the univariate state-space

model (2.28) is fully consistent with that reported in Table 6. A comparison of the rank order of

MSAs in Table 9 to the MSA-specific factors (Appendix Table A2) reveals that MSAs with little

developable land and high population growth can be found toward to the top of the list. What also

appears to be important, however, are large values for land use restrictions (wr) and high income

growth during the period before the house price crash in 2007/08. Both of these factors appeared

generally less important for the much smaller Case/Shiller sample of MSAs.

6 Conclusion

We identify the role that local demand and supply conditions play for the impact that changes

in the federal funds rate have had on house price inflation rates at the level of the Metropolitan

Statistical Area (MSA) during the period from 1992 to 2014. The paper is motivated by the fact

that the period of house price inflation prior to the economic downturn in 2008/9 was characterized

by significant differences in inflation rates across MSAs. At the same time, advances in information

technology and changes in regulations made financial markets far more integrated than at any time

before. This suggests that local conditions played a key role in the observed differences in inflation

rates. The importance of local conditions was identified earlier by Glaeser, Gyourko, and Saiz (2008)

and Saiz (2010).

In this paper, we suggest a novel way to directly link house price inflation at the local level

to national monetary policy. For that purpose we employ a set of interaction terms between

the monetary policy stance, which we identify with the federal funds rate, and the MSA-specific

demand/supply conditions. These interaction terms allow for a weighted impact of national changes

in monetary policy on MSA-specific home price inflation rates. Thus, we offer a flexible, data driven

way to capture the impact of unobserved and unknown variables which may significantly impact

the estimates and policy conclusions.
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We incorporate the interaction terms into a state-space framework. This choice allows us not

only to identify the impact of local demand/supply indicators and monetary policy on house price

inflation with a minimal number of parameters, but also to employ a flexible way to account

for pre-existing trend conditions and, equally important, unobserved variables. We employ both

multivariate and univariate models. As a robustness check we also estimate standard panel data

models.

Our focus is on the monthly Case/Shiller price index series for 19 MSAs over the time period

from 1992:06 to 2014:12. These data allow us to estimate all models. As a robustness check we

also estimate univariate state-space and panel data models on quarterly FHFA data from 1992:3 to

2014:4. Given constraints on data availability for MSA characteristics, we limit the FHFA data to

94 MSAs. We find the results to be largely consistent across methodology and data sets.

The estimates suggest that local population growth is a key demand side factor and the percentage

of undevelopable land a primary supply side factor that determine how national monetary policy

impacts house price inflation rates at the MSA level. We find that MSAs with a high share of

undevelopable land or strong population growth are far more prone to experience house price

inflation from a reduction in the federal funds rate than MSAs without those characteristics. A

higher quality of life, by contrast, appears to moderate the impact of a change in the federal funds

rate on house price inflation. For the larger set of MSAs contained in the FHFA data set, there is

evidence that large values for land use restrictions (wr) and high income growth during the period

before the house price crash in 2007/8 are also important to explain a strong response of MSAs to

changes in monetary policy.
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Appendix

Table A1. MSA Characteristics for Case/Shiller Monthly Data Set
MSA ud wr se ql pop9508 inc9508 pop0813 inc0813
Atlanta 0.0430 0.03 1.94 175 2.7 3.6 1.3 0.7
Boston 0.3406 1.67 0.65 45 0.4 4.9 0.9 2.0
Charlotte 0.0519 -0.53 2.59 123 2.8 3.7 1.7 1.6
Chicago 0.4028 0.01 0.73 81 0.6 4.0 0.3 1.2
Cleveland 0.4054 -0.18 0.90 128 -0.2 4.4 -0.2 1.6
Denver 0.1656 0.81 1.18 26 2.0 4.4 1.8 1.6
Detroit 0.2458 0.07 1.04 217 -0.1 3.2 -0.2 1.6
Las Vegas 0.3627 -0.68 1.82 152 4.8 3.5 1.2 -0.7
Los Angeles 0.5343 0.50 0.57 15 0.6 4.6 0.7 1.8
Miami 0.7691 0.94 0.57 39 1.4 4.0 1.3 0.7
Minneapolis 0.1932 0.38 1.18 174 1.2 4.3 0.9 1.6
New York 0.4051 0.67 0.64 51 0.5 4.6 0.6 1.5
Phoenix 0.1523 0.60 1.29 72 3.1 4.1 1.4 0.6
Portland 0.3646 0.26 1.01 37 1.7 3.7 1.3 1.5
San Diego 0.6363 0.44 0.68 8 1.1 5.2 1.2 1.8
San Francisco 0.7239 0.78 0.59 4 0.7 5.0 1.3 2.4
Seattle 0.4288 0.93 0.78 22 1.4 4.9 1.5 1.5
Tampa 0.4219 -0.24 1.03 87 1.6 3.8 0.9 1.2
Washington, D.C. 0.1450 0.21 1.28 122 1.5 4.7 1.8 1.0
Notes: The listed MSA-specific demand and supply characteristics are taken to construct the
interaction terms with the federal funds rate. ud and se stand for the share of undevelopable
land and the housing supply elasticity developed by Saiz (2011). Variable wr is the Wharton
Residential Land Use Regulatory Index. Variable ql is the (adjusted) quality of life ranking
from Albouy (2012). Variables pop9508 and pop0813 are the compound annual growth rates
of population between 1995 and 2008 and between 2008 and 2013, respectively, as taken from
the Bureau of Economic Analysis Regional Data tables. Variables inc9508 and inc0813 are the
corresponding growth rates for per capita personal income, also taken from the BEA.
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Table A2. MSA Characteristics for FHFA Quarterly Data Set
MSA (MSAD) ud wr se ql pop9508 inc9508 pop0813 inc0813
Akron OH 0.0653 0.00 1.90 128 0.2 3.9 0.1 2.2
Albany-Schenectady-Troy NY 0.2262 -0.01 1.45 196 0.3 4.3 0.3 2.7
Albuquerque NM 0.1363 0.36 1.58 34 1.8 3.6 0.9 0.7
Allentown-Bethlehem-Easton
PA-NJ

0.2092 0.02 1.54 143 1.0 4.0 0.3 2.0

Anaheim-Santa Ana-Irvine CA
(MSAD)

0.5343 0.50 0.57 15 1.0 4.8 1.0 1.1

Atlanta-Sandy Springs-Roswell
GA

0.0430 0.03 1.94 175 2.7 3.6 1.3 0.7

Austin-Round Rock TX 0.0442 -0.27 2.41 67 3.6 4.4 2.9 2.2
Bakersfield CA 0.2938 0.39 1.34 231 2.2 3.9 1.1 3.8
Baltimore-Columbia-Towson
MD

0.2225 1.65 0.86 122 0.6 5.1 0.7 2.1

Baton Rouge LA 0.3373 -0.83 1.86 166 1.2 4.6 0.8 2.5
Birmingham-Hoover AL 0.1476 -0.24 1.79 213 0.8 4.4 0.4 1.4
Boston MA (MSAD) 0.3406 1.67 0.65 45 0.4 5.0 1.0 2.1
Bridgeport-Stamford-Norwalk
CT

0.4456 0.19 0.86 51 0.5 4.8 0.8 1.2

Buffalo-Cheektowaga-Niagara
Falls NY

0.1925 -0.28 1.49 230 -0.4 4.0 0.0 3.1

Cambridge-Newton-Framingham
MA (MSAD)

0.3406 1.67 0.65 45 0.4 4.9 0.9 1.8

Camden NJ (MSAD) 0.1050 1.13 1.10 195 0.5 4.5 0.1 1.7
Charleston-North Charleston
SC

0.6072 -0.81 1.38 56 1.6 5.1 2.0 2.0

Charlotte-Concord-Gastonia
NC-SC

0.0519 -0.53 2.59 123 2.8 3.7 1.7 1.6

Chicago-Naperville-Arlington
Heights IL (MSAD)

0.4028 0.01 0.73 81 0.4 4.2 0.3 1.1

Cincinnati OH-KY-IN 0.1023 -0.58 2.15 187 0.6 4.1 0.4 1.9
Cleveland-Elyria OH 0.4054 -0.18 0.90 128 -0.2 3.7 -0.2 2.3
Colorado Springs CO 0.2240 0.85 1.31 25 1.9 4.1 1.8 1.4
Columbia SC 0.1580 -0.76 2.57 102 1.7 4.0 1.3 1.1
Columbus OH 0.0263 0.25 1.88 161 1.3 3.7 1.1 2.8
Dallas-Plano-Irving TX
(MSAD)

0.0923 -0.27 1.88 206 2.5 4.4 1.9 1.3

Dayton OH 0.0108 -0.50 2.91 163 -0.1 3.3 0.1 2.1
Denver-Aurora-Lakewood CO 0.1656 0.81 1.18 26 2.0 4.4 1.8 1.6
Detroit-Dearborn-Livonia MI
(MSAD)

0.2458 0.07 1.04 217 -0.9 3.3 -1.0 1.6

Elgin IL (MSAD) 0.4028 0.01 0.73 81 2.5 2.9 0.6 1.6
El Paso TX 0.1285 0.71 1.42 193 1.3 4.5 1.5 2.7
Fort Lauderdale-Pompano
Beach-Deerfield Beach FL
(MSAD)

0.7605 0.70 0.71 39 1.4 3.8 1.3 0.3

continued on next page
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Table A2 continued.
MSA (MSAD) ud wr se ql pop9508 inc9508 pop0813 inc0813
Fort Worth-Arlington TX
(MSAD)

0.0504 -0.28 2.27 206 2.4 4.6 1.7 1.8

Fresno CA 0.1356 0.90 1.31 97 1.5 4.0 1.0 2.5
Gary IN (MSAD) 0.3163 -0.69 1.59 81 0.4 4.0 0.0 2.1
Grand Rapids-Wyoming MI 0.0948 -0.14 1.93 204 1.0 3.0 0.6 2.2
Greensboro-High Point NC 0.0341 -0.29 2.39 126 1.4 3.2 0.8 1.3
Greenville-Anderson-Mauldin
SC

0.1281 -0.94 2.70 167 1.5 3.7 1.0 1.4

Hartford-West Hartford-East
Hartford CT

0.2228 0.51 1.19 156 0.5 4.4 0.2 1.7

Houston-The Woodlands-Sugar
Land TX

0.0893 -0.30 2.01 268 2.3 5.5 2.1 1.4

Indianapolis-Carmel-Anderson
IN

0.0150 -0.74 3.36 189 1.4 3.6 1.1 1.7

Jacksonville FL 0.4775 -0.03 1.06 110 2.0 4.2 1.1 1.2
Kansas City MO-KS 0.0608 -0.80 2.82 184 1.1 4.2 0.8 1.3
Knoxville TN 0.3740 -0.38 1.42 114 1.1 3.9 0.6 2.3
Las Vegas-Henderson-Paradise
NV

0.3627 -0.68 1.82 152 4.8 3.5 1.2 -0.7

Little Rock-North Little
Rock-Conway AR

0.1364 -0.88 2.73 116 1.3 4.4 1.2 1.9

Los Angeles-Long
Beach-Glendale CA (MSAD)

0.5343 0.50 0.57 15 0.5 4.6 0.6 2.0

Louisville/Jefferson County
KY-IN

0.1256 -0.46 2.02 144 0.9 3.9 0.7 1.7

Memphis TN-MS-AR 0.1233 1.16 1.17 244 1.0 3.7 0.5 1.9
Miami-Miami Beach-Kendall
FL (MSAD)

0.7691 0.94 0.57 39 1.2 4.3 1.4 1.5

Milwaukee-Waukesha-West
Allis WI

0.4198 0.45 0.86 106 0.3 4.1 0.4 1.8

Minneapolis-St.
Paul-Bloomington MN-WI

0.1932 0.38 1.18 174 1.2 4.3 0.9 1.6

Nashville-Davidson
–Murfreesboro–Franklin TN

0.1261 -0.46 2.03 90 2.0 3.9 1.6 2.6

Nassau County-Suffolk County
NY (MSAD)

0.4051 0.67 0.64 51 0.4 4.7 0.3 1.4

Newark NJ-PA (MSAD) 0.3021 0.73 0.92 51 0.5 4.5 0.4 1.2
New Haven-Milford CT 0.4456 0.19 0.86 51 0.4 4.2 0.1 1.9
New Orleans-Metairie LA 0.7501 -1.25 0.83 82 -1.2 5.5 1.8 0.2
New York-Jersey City-White
Plains NY-NJ (MSAD)

0.4051 0.67 0.64 51 0.5 4.6 0.7 1.6

North Port-Sarasota-Bradenton
FL

0.6681 0.89 0.99 19 1.9 4.1 1.0 0.4

continued on next page
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Table A2 continued.
MSA (MSAD) ud wr se ql pop9508 inc9508 pop0813 inc0813
Oakland-Hayward-Berkeley CA
(MSAD)

0.6010 0.63 0.66 4 0.9 4.8 1.3 2.0

Oklahoma City OK 0.0257 -0.38 2.58 137 1.2 5.4 1.6 1.6
Omaha-Council Bluffs NE-IA 0.0351 -0.56 2.83 134 1.2 4.4 1.2 1.6
Orlando-Kissimmee-Sanford FL 0.3666 0.31 1.15 78 3.0 3.9 1.7 0.7
Oxnard-Thousand
Oaks-Ventura CA

0.8010 1.22 0.73 15 1.1 4.3 0.8 1.7

Philadelphia PA (MSAD) 0.1050 1.13 1.10 195 -0.2 4.6 0.6 2.4
Phoenix-Mesa-Scottsdale AZ 0.1523 0.60 1.29 72 3.1 4.1 1.4 0.6
Pittsburgh PA 0.3052 0.08 0.99 218 -0.4 4.7 0.0 2.6
Portland-Vancouver-Hillsboro
OR-WA

0.3646 0.26 1.01 37 1.7 3.7 1.3 1.5

Providence-Warwick RI-MA 0.1423 2.07 0.97 70 0.3 4.5 0.0 2.3
Raleigh NC 0.0845 0.62 1.50 74 3.8 3.6 2.4 1.4
Richmond VA 0.0906 -0.38 2.19 178 1.4 4.1 0.9 1.5
Riverside-San
Bernardino-Ontario CA

0.3873 0.57 0.92 15 2.6 3.8 1.3 1.4

Rochester NY 0.3055 0.04 1.20 194 0.1 3.7 0.1 2.8
St. Louis MO-IL 0.1122 -0.73 2.10 179 0.4 4.1 0.2 1.5
Salt Lake City UT 0.6536 -0.03 0.86 55 1.5 4.9 1.6 1.2
San Antonio-New Braunfels TX 0.0394 -0.26 2.26 188 2.1 4.3 2.0 2.3
San Diego-Carlsbad CA 0.6363 0.44 0.68 8 1.1 5.2 1.2 1.8
San Francisco-Redwood
City-South San Francisco
CA (MSAD)

0.7239 0.78 0.59 4 0.4 5.3 1.2 3.1

San Jose-Sunnyvale-Santa Clara
CA

0.6271 0.21 0.75 4 0.8 4.8 1.3 3.7

Seattle-Bellevue-Everett WA
(MSAD)

0.4288 0.93 0.78 22 1.3 4.9 1.7 1.6

Silver
Spring-Frederick-Rockville
MD (MSAD)

0.1450 0.21 1.28 122 1.3 4.8 1.4 0.5

Stockton-Lodi CA 0.1193 0.59 1.53 91 2.0 3.6 1.0 2.0
Syracuse NY 0.1717 -0.70 1.97 260 -0.1 4.1 0.1 2.5
Tacoma-Lakewood WA (MSAD) 0.3601 1.34 0.96 22 1.5 5.0 0.9 1.1
Tampa-St.
Petersburg-Clearwater FL

0.4219 -0.24 1.03 87 1.6 3.8 0.9 1.2

Tucson AZ 0.2452 1.55 1.03 32 1.8 4.7 0.6 0.3
Tulsa OK 0.0641 -0.75 3.02 173 1.0 5.5 1.0 1.8
Virginia Beach-
Norfolk-Newport News VA-NC

0.6004 0.12 0.78 54 0.6 4.8 0.5 1.9

continued on next page
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Table A2 continued.
MSA (MSAD) ud wr se ql pop9508 inc9508 pop0813 inc0813
Warren-Troy-Farmington Hills
MI (MSAD)

0.2458 0.07 1.04 217 0.6 3.0 0.4 1.5

Washington-Arlington-Alexandria
DC-VA-MD-WV (MSAD)

0.1450 0.21 1.28 122 1.6 4.7 1.9 1.2

West Palm Beach-Boca
Raton-Delray Beach FL
(MSAD)

0.6411 0.30 0.99 66 1.9 3.7 1.2 0.2

Wichita KS 0.0173 -1.20 5.16 220 0.9 4.4 0.6 0.8
Wilmington DE-MD-NJ
(MSAD)

0.1469 0.46 1.48 18 1.0 4.0 0.5 1.8

Winston-Salem NC 0.0341 -0.29 2.39 126 1.4 3.2 0.6 1.3
Worcester MA-CT 0.3406 1.67 0.65 45 0.7 4.5 0.4 2.2
Notes: The listed MSA-specific demand and supply characteristics are taken to construct the interaction
terms with the federal funds rate. ud and se stand for the share of undevelopable land and the housing
supply elasticity developed by Saiz (2011). Variable wr is the Wharton Residential Land Use Regulatory
Index. Variable ql is the (adjusted) quality of life ranking from Albouy (2012). Variables pop9508 and
pop0813 are the compound annual growth rates of population between 1995 and 2008 and between 2008
and 2013, respectively, as taken from the Bureau of Economic Analysis Regional Data tables. Variables
inc9508 and inc0813 are the corresponding growth rates for per capita personal income, also taken from
the BEA.
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Table 1. Multivariate Estimates without Interaction Terms for Monthly Case/Shiller
Data Set

lag 8 lag 12 lag 16
coeff std err coeff std err coeff std err

Atlanta -0.268*** 0.097 -0.135 0.100 -0.193* 0.099
Boston -0.194** 0.096 -0.034 0.099 -0.069 0.098
Charlotte -0.248** 0.098 -0.109 0.100 -0.147 0.100
Chicago -0.225** 0.096 -0.083 0.098 -0.143 0.098
Cleveland -0.238** 0.097 -0.104 0.099 -0.164* 0.099
Denver -0.363*** 0.099 -0.230** 0.101 -0.290*** 0.101
Detroit -0.206** 0.097 -0.054 0.099 -0.097 0.099
Las Vegas -0.429*** 0.101 -0.321*** 0.103 -0.379*** 0.103
Los Angeles -0.382*** 0.098 -0.235** 0.100 -0.270*** 0.100
Miami -0.365*** 0.098 -0.228** 0.100 -0.285*** 0.100
Minneapolis -0.268*** 0.097 -0.107 0.100 -0.155 0.099
New York -0.186* 0.095 -0.040 0.098 -0.087 0.097
Phoenix -0.400*** 0.100 -0.276*** 0.102 -0.331*** 0.102
Portland -0.216** 0.097 -0.086 0.099 -0.149 0.099
San Diego -0.352*** 0.098 -0.188* 0.100 -0.214** 0.100
San Francisco -0.223** 0.096 -0.093 0.098 -0.156 0.098
Seattle -0.388*** 0.100 -0.230** 0.102 -0.263** 0.102
Tampa -0.319*** 0.097 -0.198** 0.099 -0.256*** 0.099
Washington, D.C. -0.312*** 0.096 -0.156 0.098 -0.191* 0.098

LLikelihood 18957 18961 18963
Notes: Estimations are based on monthly Case/Shiller data for the period 1992:06 to
2014:12. A separate multivariate state-space model (Equations (1) to (4)) is run for
each lag length (8, 12, and 16). The dependent variable for each of the 19 MSAs is
the log difference of the monthly price index. The estimated coefficients and standard
errors are multiplied by 100 for the purpose of this table. *** identifies significance at
the 1% level, ** at the 5% level, and * at the 10% level.
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Table 2. Coefficients of Federal Funds Rate as Function of MSA
Characteristics

Model 1 Model 2
Variables coefficient p-value coefficient p-value

Constant 0.214 0.000 0.084 0.003
pop9508 0.074 0.000 0.053 0.000
se -0.098 0.000
ud 0.154 0.006
R-squared 0.397 0.350

Variable addition tests:
wr 0.362 0.589
ql 0.983 0.432
pop0813, inc9508, inc0813 0.775 0.230

Notes: The 57 coefficients of Table 1 make up the dependent
variable. For ease of interpretation, the coefficients of Table 1 are
multiplied by (-1) before the OLS regressions are run. A p-value less
than 0.01 indicates that a parameter (or set of paramters) is (are)
statistically significant from zero at better than the 1 percent level.
The variable addition tests suggest that none of the variables or sets
of variables adds significant explanatory power.
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Table 3. Multivariate Estimates with Multiple Interaction Terms for Monthly Case/Shiller Data Set

(1) (2) (3) (4)

coeff std err coeff std err coeff std err coeff std err

lag 8:

ln fedfunds -0.3179*** 0.0963 -0.2871*** 0.0965 -0.1718* 0.0963 0.0256 0.1009
ln fedfunds*ud -0.2006*** 0.0322 -0.3889*** 0.0433
ln fedfunds*se 0.0837*** 0.0182 0.1462*** 0.0230
ln fedfunds*wr 0.0623*** 0.0143 0.0578*** 0.0143 0.0418*** 0.0124 0.0096 0.0133
ln fedfunds*ql -0.0007*** 0.0002 -0.0010*** 0.0002
ln fedfunds*pop9508 -0.0366*** 0.0103 -0.0414*** 0.0103 -0.0265*** 0.0097 -0.0186* 0.0097
ln fedfunds*pop0813 -0.0097 0.0156 -0.0424** 0.0169 -0.0057 0.0156 -0.0515*** 0.0166
LLikelihood 18880 18890 18889 18910

lag 12:

ln fedfunds -0.1853* 0.0985 -0.15756 0.0987 -0.0233 0.0986 0.1629 0.1030
ln fedfunds*ud -0.2178*** 0.0325 -0.3960*** 0.0436
ln fedfunds*se 0.0936*** 0.0183 0.1513*** 0.0232
ln fedfunds*wr 0.0685*** 0.0143 0.0644*** 0.0143 0.0450*** 0.0124 0.0146 0.0133
ln fedfunds*ql -0.0006*** 0.0002 -0.0010*** 0.0002
ln fedfunds*pop9508 -0.0508*** 0.0103 -0.0550*** 0.0103 -0.0393*** 0.0097 -0.0315*** 0.0097
ln fedfunds*pop0813 0.0028 0.0156 -0.0275 0.0171 0.0077 0.0157 -0.0360** 0.0168
LLikelihood 18889 18897 18898 18917

lag 16:

ln fedfunds -0.2362** 0.0982 -0.2101** 0.0984 -0.07201 0.0983 0.1083 0.1028
ln fedfunds*ud -0.2216*** 0.0327 -0.3948*** 0.0438
ln fedfunds*se 0.0955*** 0.0184 0.1512*** 0.0235
ln fedfunds*wr 0.0707*** 0.0143 0.0670*** 0.0143 0.0468*** 0.0124 0.0173 0.0133
ln fedfunds*ql -0.0006*** 0.0002 -0.0010*** 0.0002
ln fedfunds*pop9508 -0.0589*** 0.0103 -0.0629*** 0.0104 -0.0470*** 0.0098 -0.0396*** 0.0098
ln fedfunds*pop0813 0.0115 0.0157 -0.0177 0.0173 0.0163 0.0157 -0.0257 0.0169
LLikelihood 18898 18905 18907 18924

Notes: Estimations are based on monthly Case/Shiller data for the period 1992:06 to 2014:12. A separate

multivariate state-space model is estimated for each combination of variables (columns 1 to 4) and various lag length

(8 to 16). The dependent variable for each MSA is the log difference of the monthly price index; for readability,

the estimated coefficients and associated standard errors are multiplied by 100. All models are run on the sample

1992:06 to 2014:12, which makes the Log Likelihood values (LLikelihood) directly comparable. *** identifies

significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 4. Univariate Estimates with Multiple Interaction Terms for Monthly Case/Shiller Data Set
(1) (2) (3) (4)
coeff std err coeff std err coeff std err coeff std err

ln fedfunds -0.0492 0.0947 -0.0350 0.0949 0.3262* 0.1883 0.2786 0.4811
ln fedfunds*ud -0.3893*** 0.1477 -0.3619*** 0.1483 -0.6580*** 0.1993 -0.4289* 0.2327
ln fedfunds*wr -0.1478** 0.0742 -0.1872** 0.0762 -0.1188 0.0846
ln fedfunds*ql -0.0019** 0.0008 -0.0014 0.0010
ln fedfunds*pop9508 -0.0623* 0.0346 -0.1126*** 0.0428 -0.0878** 0.0442 0.0094 0.0804
ln fedfunds*pop0813 -0.0504 0.0654 0.0474 0.0818 -0.0697 0.0972 -0.0888 0.1122
ln fedfunds*inc9508 -0.1100 0.1008
ln fedfunds*inc0813 0.1784* 0.1023
LLikelihood 19989 19991 19993 19995

Notes: The dependent variable is the log difference of the monthly, seasonally adjusted price index. The
panel contains 19 MSAs, each observed for the time period 1992:06 to 2014:12. The estimates for the federal
funds rate are based on a lag length of 8 months. The estimted coefficients and standard errors are multiplied
by 100 for the purpose of this table. The likelihood values for larger lag lengths are smaller. *** identifies
significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 5. Panel Data Estimates with Multiple Interaction Terms for Monthly Case/Shiller Data Set
(1) (2) (3) (4)
coeff std err coeff std err coeff std err coeff std err

One AR term
ln fedfunds -0.3909*** 0.0657 -0.3915*** 0.0657 -0.2348* 0.1271 -0.2169 0.3016
ln fedfunds*ud -0.1530 0.0992 -0.1568 0.1012 -0.2930** 0.1376 -0.3119** 0.1500
ln fedfunds*wr 0.0087 0.0465 -0.0157 0.0493 -0.0228 0.0545
ln fedfunds*ql -0.0008 0.0005 -0.0008 0.0006
ln fedfunds*pop9508 -0.0530*** 0.0212 -0.0500* 0.0268 -0.0427 0.0271 -0.0523 0.0462
ln fedfunds*pop0813 0.0393 0.0416 0.0338 0.0511 -0.0098 0.0592 -0.0078 0.0666
ln fedfunds*inc9508 0.0075 0.0581
ln fedfunds*inc0813 -0.0175 0.0581
Wald statistic χ2 193 193 198 198

Panel-specific ARs
ln fedfunds -0.3658*** 0.0585 -0.3652*** 0.0586 -0.0742 0.1344 -0.4147 0.2969
ln fedfunds*ud 0.0086 0.1164 0.0018 0.1192 -0.3228* 0.1800 -0.3269* 0.1961
ln fedfunds*wr 0.0116 0.0429 0.0061 0.0429 -0.0177 0.0531
ln fedfunds*ql -0.0013** 0.0005 -0.0011** 0.0006
ln fedfunds*pop9508 -0.0343 0.0306 -0.0275 0.0400 -0.0066 0.0408 0.0208 0.0554
ln fedfunds*pop0813 0.0532 0.0436 0.0421 0.0605 -0.0550 0.0724 -0.1029 0.0811
ln fedfunds*inc9508 0.0783 0.0597
ln fedfunds*inc0813 0.0136 0.0523
Wald statistic χ2 152 152 161 163

Notes: The dependent variable is the log difference of the monthly, seasonally adjusted price index. The
estimated coefficients and standard errors are multiplied by 100 for the purpose of this table. The panel
contains 19 MSAs, each observed for the time period 1992:06 to 2014:12. The estimates for the federal funds
rate are based on a lag length of 16 months. Estimates refer to panel-based feasible GLS with model-specific
AR(1) correction (Stata command: xtgsl, corr(ar1)) or panel-specific AR(1) correction (Stata command: xtgls,
corr(psar1)). *** identifies significance at the 1% level, ** at the 5% level, and * at the 10% level.
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Table 6. Impact of Federal Funds Rate on Annual House Price Inflation Rate for Monthly
Case/Shiller Data Set

(1) (2) (3) (4) (5)
No interaction term Models with interaction terms Average of (1)-(3)

multivariate multivariate univariate panel

Las Vegas -7.14 -6.91 -11.30 -9.19 -8.45
Miami -5.54 -5.50 -12.29 -8.47 -7.78
Phoenix -6.37 -2.82 -7.61 -5.84 -5.60
San Francisco -2.98 -4.88 -8.66 -7.29 -5.51
Seattle -5.57 -3.03 -7.63 -6.19 -5.41
San Diego -4.77 -4.41 -7.05 -6.83 -5.41
Atlanta -3.77 -3.81 -7.33 -7.54 -4.97
Tampa -4.89 -4.55 -5.39 -7.23 -4.95
Minneapolis -3.35 -4.12 -7.37 -7.79 -4.95
Los Angeles -5.60 -3.38 -4.76 -5.78 -4.58
Washington -4.17 -2.80 -5.89 -7.25 -4.29
Denver -5.59 -1.68 -5.47 -5.08 -4.24
Detroit -2.26 -4.42 -4.93 -7.87 -3.87
Boston -1.88 -2.04 -7.56 -5.36 -3.83
Portland -2.85 -3.27 -5.25 -6.06 -3.79
Charlotte -3.18 -3.63 -4.18 -6.85 -3.66
Cleveland -3.19 -4.00 -2.49 -6.73 -3.23
Chicago -2.85 -3.47 -3.35 -6.19 -3.22
New York -1.98 -2.79 -4.81 -5.72 -3.19

Mean -4.10 -3.76 -6.49 -6.80 -4.79
Std. dev. 1.56 1.22 2.48 1.09 1.42
Max -7.14 -6.91 -12.29 -9.19 -8.45
Min -1.88 -1.68 -2.49 -5.08 -3.19

Notes: The panel contains 19 MSAs, each observed for the time period 1992:06 to 2014:12. Column
(1) presents averages of the three coefficient estimates of Table 1, multiplied by 12 (to annualize the
inflation rate) and by 1.58 (the standard deviation of the log of the fed funds rate over the sample
period). Column (2) is based on Column (4) of Table 3, third panel, evaluated at the MSA-specific
values of the interaction terms and multiplied by 12 and 1.58. Column (3) relates to Column (3)
of Table 4; adjusted as column (2). Column (4) is based on Column (3) of Table 5, second panel;
adjusted as Column (3). The estimates are marginal effects giving the change in the inflation rate
from a one standard deviation increase in the log of the federal funds rate. For example, if the log of
the federal funds rate decreases by a standard deviation (1.58), which translates to 4.86 percentage
points for the federal funds rate, then the home price inflation rate in the Phoenix MSA is predicted
to go up by 5.6 (e.g., from 5% to 10.6%) based on the average estimate in Column (5).
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Table 7. Univariate Estimates with Multiple Interaction Terms for Quarterly FHFA Data Set
(1) (2) (3) (4)
coeff std err coeff std err coeff std err coeff std err

ln fedfunds -0.0616 0.0826 -0.0639 0.0824 -0.0182 0.1564 -0.4019 0.3558
ln fedfunds*ud -1.5489*** 0.1664 -1.3936*** 0.1725 -1.4367*** 0.2131 -1.4806*** 0.2154
ln fedfunds*wr -0.1658*** 0.0499 -0.1732*** 0.0542 -0.1838*** 0.0563
ln fedfunds*ql -0.0002 0.0007 -0.0002 0.0007
ln fedfunds*pop9508 -0.2463*** 0.0494 -0.2399*** 0.0493 -0.2413*** 0.0495 -0.2020*** 0.0628
ln fedfunds*pop0813 0.1281 0.0743 0.1075 0.0744 0.1032 0.0755 0.0321 0.0947
ln fedfunds*inc9508 0.1044 0.0764
ln fedfunds*inc0813 -0.0182 0.0506
LLikelihood 21825 21830 21830 21831

Notes: The dependent variable is the log difference of the quarterly, seasonally adjusted price index. The panel
contains 94 MSAs, each observed for the time period 1992:3 to 2014:4. The estimates for the federal funds rate
are based on a lag length of 2 quarters. The estimated coefficients and standard errors are multiplied by 100 for
the purpose of this table. The likelihood values for larger lag lengths are smaller. *** identifies significance at
the 1% level, ** at the 5% level, and * at the 10% level.
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Table 8. Panel Data Estimates with Multiple Interaction Terms for Quarterly FHFA Data Set
(1) (2) (3) (4)
coeff std err coeff std err coeff std err coeff std err

One AR term
ln fedfunds -0.8376*** 0.0603 -0.8373*** 0.0603 -0.6042*** 0.1027 -0.0104*** 0.2239
ln fedfunds*ud -0.3279*** 0.0996 -0.3498*** 0.1034 -0.5686*** 0.1292 -0.6079*** 0.1304
ln fedfunds*wr 0.0236 0.0300 -0.0160 0.0331 -0.0318 0.0344
ln fedfunds*ql -0.0012*** 0.0004 -0.0012*** 0.0004
ln fedfunds*pop9508 -0.1608*** 0.0297 -0.1623*** 0.0297 -0.1708*** 0.0298 -0.1246*** 0.0385
ln fedfunds*pop0813 0.1382*** 0.0449 0.1419*** 0.0452 0.1171** 0.0459 0.0368 0.0581
ln fedfunds*inc9508 0.1137** 0.0472
ln fedfunds*inc0813 -0.0108 0.0309
Wald statistic χ2 632 633 645 653

Panel-specific ARs
ln fedfunds -0.5736*** 0.0497 -0.5720*** 0.0498 -0.3800*** 0.0869 -0.6981*** 0.1746
ln fedfunds*ud -0.1209 0.0909 -0.1321 0.0935 -0.3363*** 0.1200 -0.3917*** 0.1230
ln fedfunds*wr 0.0126 0.0251 -0.0030 0.0257 -0.0121 0.0269
ln fedfunds*ql -0.0010*** 0.0004 -0.0010*** 0.0004
ln fedfunds*pop9508 -0.0549** 0.0280 -0.0565*** 0.0281 -0.0783*** 0.0292 -0.0385 0.0348
ln fedfunds*pop0813 0.0440 0.0378 0.0472 0.0383 0.0477 0.0382 -0.0161 0.0479
ln fedfunds*inc9508 0.0858** 0.0382
ln fedfunds*inc0813 -0.0075 0.0273
Wald statistic χ2 411 411 422 429

Notes: The dependent variable is the log difference of the quarterly, seasonally adjusted price index. The panel
contains 94 MSAs, each observed for the time period 1992:3 to 2014:4. The estimates for the federal funds rate
are based on a lag length of 6 quarters. The estimated coefficients and standard errors are multiplied by 100
for the purpose of this table. All model variants contain a quadratic time trend common to all MSAs. The
models are estimated with panel-based feasible GLS, with sample AR(1) correction or panel-specific AR(1)
correction; panel-corrected standard errors are reported. *** identifies significance at the 1% level, ** at the
5% level, and * at the 10% level.
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Table 9. Impact of Federal Funds Rate on Annual House Price Inflation Rate for Quarterly FHFA Data Set

(1) (2) (1) (2) (1) (2)

univariate panel univariate panel univariate panel

Oxnard -9.78 -4.66 New Haven -5.03 -3.77 Washington -3.01 -3.57

North Port -9.35 -4.66 New York -4.92 -3.54 Nashville -2.95 -3.78

Las Vegas -9.27 -5.74 Colorado Springs -4.88 -3.59 Houston -2.91 -4.12

Fort Lauderdale -9.00 -5.00 Milwaukee -4.72 -4.09 Silver Spring -2.89 -3.44

Miami -8.96 -4.74 Bridgeport -4.70 -3.51 Columbia -2.67 -3.78

West Palm Beach -8.36 -5.04 Knoxville -4.52 -4.29 New Orleans -2.63 -3.52

Riverside -7.41 -4.26 Baltimore -4.49 -3.39 Albany -2.62 -4.04

San Francisco -7.33 -3.67 Denver -4.48 -3.33 Pittsburgh -2.55 -3.99

Orlando -7.29 -4.65 Stockton -4.39 -4.00 Birmingham -2.37 -4.03

Elgin -7.29 -5.08 Chicago -4.33 -3.84 Richmond -2.29 -3.98

San Diego -7.26 -3.71 Newark -4.28 -3.34 San Antonio -2.28 -4.03

Salt Lake City -7.25 -4.27 Providence -4.25 -3.10 Grand Rapids -2.18 -4.59

Jacksonville -6.81 -4.66 Fresno -4.10 -3.76 Greenville -2.12 -4.19

Oakland -6.78 -3.75 Albuquerque -4.07 -3.61 Columbus -2.10 -3.93

Tacoma -6.59 -3.39 Atlanta -3.99 -4.49 Winston-Salem -2.10 -3.96

Tucson -6.46 -3.42 Austin -3.96 -3.66 Greensboro -1.96 -3.96

San Jose -6.42 -3.75 Memphis -3.85 -4.67 Detroit -1.94 -4.37

Anaheim -6.42 -3.67 Baton Rouge -3.75 -4.18 Louisville -1.90 -3.80

Virginia Beach -6.34 -3.93 Minneapolis -3.68 -4.11 Little Rock -1.82 -3.49

Phoenix -6.07 -4.03 Cleveland -3.59 -4.20 Philadelphia -1.79 -3.53

Bakersfield -5.94 -5.20 Allentown -3.55 -4.02 Cincinnati -1.32 -3.82

Los Angeles -5.94 -3.62 Hartford -3.50 -3.83 Kansas City -1.21 -3.78

Seattle -5.92 -3.52 Dallas -3.40 -4.34 Akron -1.20 -3.38

Charleston -5.92 -4.03 Charlotte -3.36 -4.13 Buffalo -1.19 -4.10

Worcester -5.90 -3.52 Wilmington -3.33 -3.11 Indianapolis -1.12 -4.08

Raleigh -5.88 -4.32 Warren -3.25 -4.95 Omaha -1.12 -3.35

Tampa -5.64 -4.45 El Paso -3.20 -4.03 St. Louis -1.09 -3.73

Portland -5.53 -4.11 Rochester -3.19 -4.47 Tulsa -1.01 -3.06

Cambridge -5.11 -3.24 Camden -3.18 -3.78 Syracuse -0.95 -4.24

Boston -5.04 -3.19 Gary -3.05 -3.67 Oklahoma City -0.95 -2.87

Nassau County -5.04 -3.46 Fort Worth -3.01 -4.11 Wichita -0.25 -3.71

Dayton 0.24 -3.64

Mean -4.18 -3.95

Std. dev. 2.28 0.52

Max -9.78 -5.74

Min 0.24 -2.87

Notes: The panel contains 94 MSAs, each observed for the time period 1992:3 to 2014:4. Column (1) uses the estimates

of Column (2) of Table 7, multiplied by 4 (to annualize the inflation rate) and by 1.57 (the standard deviation of the

log of the fed funds rate over the sample period). Column (2) is based on the estimates of Column (4), lower panel, of

Table 8, adjusted as Column (1). The estimates are marginal effects. They give the change in the inflation rate from a

one standard deviation increase in the log of federal funds rate. For example, if the log of the federal funds rate drops by

1.57, which translates to 4.8 percentage points of the federal funds rate, then the annual home price inflation rate in the

Phoenix MSA is predicted to go up by 6.1 percentage points, e.g., from 5% to 11.2%, based on the results in Column (1).

The basic statistics at the end of the table refer to all 94 MSAs.
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