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Abstract

We show that the introduction of a leverage constraint improves the practical implementation

of characteristics-based portfolios. The addition of the constraint leads to significantly lower

transaction costs, to a reduction of negative portfolio weights, and to a decrease in volatility

and misspecification risk. Furthermore, it allows investors to implement any desired level of

leverage. In this study, we include 12 characteristics, thereby extending the classical size, book-

to-market and momentum paradigm. We report several key indicators such as the proportion

of negative weights, Sharpe ratio, volatility, transaction costs, the transaction cost-adjusted

certainty equivalent returns, and the Herfindahl-Hirschman index. Analyzing the sensitivity of

these key indicators to the choice of multiple combinations of the 12 characteristics, to risk aver-

sion, and to estimation sample size, we show that constrained policies are much less sensitive to

these parameters than their unconstrained counterparts. Finally, for quadratic utility, we derive

a semi-closed analytical form for the portfolio weights. Overall, we provide a comprehensive

extension of characteristics-based portfolio choice and contribute to a better understanding and

implementation of the allocation process.

Keywords: Portfolio choice, leverage constraint, characteristics-based investing

1. Introduction

Fama and French (1992) show that the size and book-to-market ratio of companies are
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strong drivers of the cross-sectional differences in stock returns, and they also document that

the performance of stocks can be explained by exposures to factors based on these drivers

(in addition to the aggregate market). The most intuitive way to create a portfolio with

exposure is to select stocks with the desired attributes. Recently, new methods have been

proposed. These techniques allocate wealth according to synthetic measures, as in Walkshäusl

and Lobe (2010), Arnott et al. (2005) and Asness et al. (2013), or rely on more systematic

methods based on optimization procedures, as in Brandt et al. (2009), Hand and Green (2011),

Hjalmarsson and Manchev (2012) and Boudt et al. (2014). However, those optimization schemes

may not be practical because they imply high levels of leverage and large transaction costs.

We therefore propose an extension to those techniques that facilitates its implementation and

enables investors to dynamically adapt their leverage over time. Additionally, we provide

new insights into the mechanics of the model with respect to risk aversion, sample size, and

constraint intensity.

The idea of combining firm characteristics with systematic optimization procedures brings

several advantages for investors. One of the main practical benefits of focusing on characteristics

in optimization schemes is the reduction in dimensionality when the investment universe is large.

For instance, a classical minimum variance optimization for the S&P 500 universe requires the

computation of more than 125,000 covariances. Furthermore, when basing their investment

decisions on risk factors, investors can transfer their beliefs in different return drivers directly

into their portfolio weights. Consequently, such approaches enable each investor to create

investment strategies according to his or her taste. For this purpose, an intuitive framework

was proposed by Brandt et al. (2009): building on the insights of Daniel and Titman (1997,

1998), they suggest modeling optimal portfolio weights by deviating from an initial benchmark

using a linear function of normalized characteristics. This is achieved by optimizing the expected

utility of the future wealth with respect to the loadings of the characteristics.

Nevertheless, this method entails limitations when applying it in practice. Similar to the

classical Markowitz (1952) mean-variance portfolios, characteristics-based portfolios are usually

very leveraged: the optimal solutions imply large negative weights and many stocks must

be shorted. For example, Tables 1 and 6 of Brandt et al. (2009) report average sums of
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negative weights above 100% in their empirical results. In practice, such levels of leverage are

often infeasible and they indirectly lead to high asset turnover and large transaction costs:

Brandt et al. (2009) display annual turnovers above 100%.1 At the end of their article Brandt

et al. (2009) advocate an extension of their model in which they set negative positions to zero

and rescale the weights. However, this approach only enables investors to set their leverage

completely to zero and, as we find in our study, is only optimal for low levels of risk aversion.

The investor might be interested in limited levels of leverage, which is, to the best of our

knowledge, absent from the literature on characteristics-based investing.2

This article has two major objectives. The first is to introduce an easy-to-implement lever-

age constraint to characteristics-based portfolio optimization to overcome the aforementioned

limitations. Therefore, we restrict the original deviation from the initial benchmark to a given

L2-norm. Such an approach has several virtues. First, it entails reduced levels of leverage. This

is notably attractive for investors who are sensitive to margin requirements but also for those

who have strong compliance-driven short-selling restrictions.3 Second, the constraint lessens

the sensitivity of the performance to the selection of firm characteristics and risk aversion. Con-

sequently, the risk of model misspecification is significantly attenuated. Finally, constrained

policies are more stable over time compared to unconstrained portfolios, reducing asset rota-

tion and curtailing corresponding transaction costs. Therefore, when adjusting the portfolios’

certainty equivalent return by transaction costs, we find that constrained portfolios are econom-

ically superior to their unconstrained counterparts. Given that our findings persist in several

robustness tests (which include the CRRA utility function), these improvements highlight the

benefits investors can expect from the methodology we propose.

1These figures correspond to a gross leverage above 3. In their study on hedge-fund leverage, Ang et al.
(2011) show that gross leverage fluctuated between 1 and 2 for equity hedge funds between 2005 and 2010.
Using another database, Farnsworth (2014) finds similar values and shows that leverage remained at even lower
levels between 2010 and 2013. Since hedge-funds are among the most levered asset managers, it is unlikely that
many investors can realize a leverage of 2 or more.

2Jacobs and Levy (2007), Lo and Patel (2008), Fan et al. (2012) and Coqueret (2015) report that reasonable
leverage is likely to increase the risk-adjusted performance of portfolios.

3For instance, in the US, Regulation T of the Federal Reserve Board requires that the sum of the absolute
value of all positions does not exceed twice the equity within the account (i.e. the margin requirement is at
least equal to 50%). The impact on prices of heterogeneous margin requirements across assets was studied
by Garleanu and Pedersen (2011). Rytchkov (2014) considers a similar problem with only one asset which is
subject to time-varying margin constraints.
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Our second objective is to improve our understanding of the performance and sensitivity

of the final portfolios with respect to both inputs: the various firm characteristics and the

model parameters. The large amount of available firm characteristics contrasts the handful

of attributes that have been considered so far. Brandt et al. (2009) argue that since market

capitalization, book-to-market ratios and past returns suffice to explain the cross-section of

returns (as shown by Fama and French (1992) and Carhart (1997)), they are good enough

candidates to be entered in the optimization program. Hjalmarsson and Manchev (2012) use the

exact same attributes. While we do not question the relevance of this choice, we adopt a more

agnostic approach, which allows for a broader set of characteristics, both in terms of accounting

figures and moments of past returns. We consider a set of 12 characteristics and study their

impact on the performance of the portfolio policies. As such, we do not restrict our study to a

few combinations of characteristics, but we span, in total, no less than 298 assortments. This

analysis can be used by potential investors as a guideline to find and understand which firm

characteristics suit them best. Finally, we study the sensitivity of our results to variations in

important input parameters such as risk aversion, estimation sample size, and intensity of the

leverage constraint. These sensitivity analyses convey additional insights on the mechanics of

the model.

We contribute to the existing literature on constraints within the mean-variance framework,

as in Jagannathan and Ma (2003), DeMiguel et al. (2009a), Fan et al. (2012), Jacobs and

Levy (2013), Jacobs and Levy (2014) and Coqueret (2015) by adding a leverage constraint to

characteristics-based investing. So far, to the best of our knowledge, this extension has not

been applied to characteristics-based polices before. Our model is close to that of Brandt et al.

(2009), even though, as in Hjalmarsson and Manchev (2012), we consider quadratic utility

functions in our base-case scenario. As a supplementary benefit, the resulting closed-form

solution allows for a direct interpretation of the terms in the formula. Finally, in addition to

Brandt et al. (2009), Hjalmarsson and Manchev (2012), Hand and Green (2011) and Boudt

et al. (2014), we broaden the existing empirical evidence on the performance of different firm

characteristics within this framework.

The remainder of the paper is structured as follows. In Section 2, we detail our methodology
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and further justify the inclusion of a constraint in the optimization scheme. In Section 3,

we describe our dataset and provide results for portfolios solely based on one or two firm

characteristics. Section 4 extends our model to several applications and underlines the flexibility

of our constraint. Section 5 is devoted to robustness checks related to the optimal number of

characteristics that should be considered, to the sensitivity of our results to sample size and

the bindingness of the constraint. Finally, in Section 6, we conclude.

2. Methodology

2.1. The model

Our starting point is the framework introduced by Brandt et al. (2009), who consider policies

which take the following linear form:4

wT = w̄T + xTθT , (1)

where w̄T is an initial benchmark which is adjusted according to the cross-sectional differences

in characteristics. The (FT × 1) vector θT is the weight assigned to the characteristics and the

(NT × FT ) matrix xT comprises the firm’s characteristics normalized so that they have zero

mean and unit variance. NT henceforth denotes the number of stocks and FT the number of

characteristics at time T . We use bold notations for vectors and matrices. Moreover, we use

subscripts to underline that the portfolios are time-dependent: we consider dynamic trading

and weights are updated at each rebalancing period. Accordingly, we seek to solve the following

max-utility problem:

max
θT

ET [u(rp,T+1)] = max
θT

ET

[
u
(
(w̄T + xTθT )

′ rT+1

)]
, (2)

where rT+1 is the (N × 1) vector of the firms future returns and rp,T+1 is the aggregate future

return of the portfolio. The expectation’s underscript T highlights that we take the conditional

4Brandt et al. (2009) normalize the second term by the number of stocks, but in our framework a scaling
simplification occurs in the computation of the optimal θT which cancels this normalization.
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expectation (the investment decision is taken with knowledge of present and past information

only).

In formula (1), we see that the elements of xTθT are simply corrections that are applied

to the benchmark so as to improve its performance. However, when the magnitude of the

corrections is too large, the benchmark weights are diluted and leverage (negative weights)

appears. This can be resolved by imposing that none of the weights be negative, similarly as in

Jagannathan and Ma (2003). For tractability purposes, we introduce an alternative constraint.

We propose performing the maximization program (2) under the constraint

θ′
Tx

′
TxTθT = δT , (3)

where δT satisfies the inequalities (θ0
T )

′x′
TxTθ

0
T > δT > 0, with θ0

T being the solution to the

unconstrained problem, so that the constraint is indeed binding. This simply amounts to

impose that the L2-norm of the vector xTθT is equal to δT . Of course, one could consider an

inequality instead of an equality in the constraint, but given the convex nature of the problem,

this would lead to the same solution (the constraint corresponds to the surface of an ellipsoid).

As δT decreases to zero, the optimal portfolio converges to the initial benchmark. Compared

to the unconstrained case, the inclusion of (3) in the optimization reduces the magnitude

of the elements of xTθT which increases the relative importance of the prior benchmark w̄T .

Accordingly, the intensity of the constraint can be fine-tuned to match any tracking-error target

with respect to the benchmark.

In this article, we set the benchmark starting point to be the equally-weighted portfolio:

w̄T = 1NT
/NT , where NT is the number of stocks considered by the investor and 1N is an

N -dimensional vector of ones. A popular alternative would be the value-weighted portfolio,

but this would set the market capitalization as an important driver of the final weights. We

prefer to stick with an agnostic prior, and this choice can be further justified by the fact that

the 1/N portfolio has been shown to consistently outperform other benchmarks, including the

value-weighted portfolios (see DeMiguel et al. (2009b) and Plyakha et al. (2012)). Moreover,

Pflug et al. (2012) have proven that when the loss distribution is highly ambiguous, the 1/N
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portfolio becomes optimal. If the benchmark is equally weighted, there is a simple equivalence

between the constraint (3) and a constraint on total weights: θ′
Tx

′
TxTθT = δT ⇔ w′

TwT =

δT + N−1
T because the characteristics’ matrix is normalized and the elements of xTθT sum

to zero. This is a convenient property because the constraint on the perturbations xTθT

translates into a constraint on the final weights. Lastly, in the context of leverage constraints,

an equally-weighted starting point ensures that all weights are at the same distance from zero,

which reduces the odds of negative weights within the cross-section of assets.

2.2. Quadratic utility versus CRRA

Utility functions with constant relative risk aversion (CRRA) are one common approach

to model investor behavior in optimization schemes.5 One of their key features is that they

take higher moments of portfolio returns into account. However, some numerical problems can

arise when using CRRA functions in optimization methods. First, as pointed out by Hentschel

and Long (2004), King et al. (2002) and Geweke (2001), some CRRA optimizations can fail to

identify the global optimum, whether it be because numerical issues or because the problem is

ill-posed. Second, Yoon (2004) shows that for a large class of realistic processes, the expected

utility is not even finite under CRRA preferences. Lastly, the choice of CRRA utility in the

context of characteristics-based optimization can result in a situation in which it is optimal to

take unlimited positive and negative portfolio weights (the solution is unbounded - the proof

of this result is available upon request).

These shortcomings are overcome by quadratic utility functions. In contrast to their CRRA

peers, they enable closed-form solutions which guarantee a global maxima under very mild as-

sumptions. For this reason, we perform our base case analysis using quadratic utility. However,

it is to note that the benefits of the introduced constraint are not dependent on the choice of

the chosen utility function. As our robustness checks show, the improvements hold as well when

using CRRA utility. The choice of quadratic preferences is not very restrictive: given the low

frequency at which accounting figures are released, we use year-on-year returns. One year is a

rather long horizon for the computation of returns and, as Campbell et al. (1997) put it, ”since

5For example Brandt et al. (2009) use CRRA functions for all the calculations in their empirical analysis.
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all moments are finite, the Central Limit Theorem applies and long-horizon returns tend to be

closer to the normal distribution than short-horizon returns”. As such, if returns are close to

Gaussian, the merits of CRRA functions vanishes.

2.3. The derivation of the constraint tightness and its interpretations

In practice, the vector θT must be estimated using past data. More precisely, we seek the

solution of

max
θT

1

T

T−1∑
t=T−τ

u

(
NT∑
i=1

(w̄i,t + θ′
Txi,t) ri,t+1

)
, subject to θ′

Tx
′
TxTθT = δT , (4)

where t = T is the present date and t = T − τ is the first date of the estimation sample. For

a vector x, we write xi its ith element and for a matrix X, Xi denotes its ith column. We

do not need to impose that the final weights sum to one because the linear form (1) and the

demeaning of xT ensure that it is the case. For implementation purposes, at a given date, the

sample has a constant number of stocks (NT ) over all past years: the optimization is performed

only on stocks for which the characteristics are available from date t = T − τ to date t = T −1.

In this setting, the sample size is equal to τ and we impose that τ > FT and NT > FT .
6

Proposition 2.1. Under the assumption of a quadratic utility function u(x) = x− γx2/2, the

solution of (4) is equal to θ∗
T (λ

∗), where

θ∗
T (λ) =

[
2λ∗Σ

(x)
T + γΣ

(P )
T

]−1

×
[
µT − γσ

(w̄)
T

]
, (5)

where λ∗ = inf{λ > 0, (θ∗
T (λ))

′x′
TxTθ

∗
T (λ) = δT}.

This representation recalls those based on regressions of Hjalmarsson and Manchev (2012),

except that new terms appear because of the constraint and the benchmark portfolio:

µT =
1

T

T−1∑
t=T−τ

x′
trt+1, Σ

(x)
T = x′

TxT , σ
(w̄)
T =

1

T

T−1∑
t=T−τ

x′
trt+1r

′
t+1w̄t,

6As is shown in the proof, these conditions ensure that the solution of the problem exists.
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and Σ
(P )
T =

1

T

T−1∑
t=T−τ

x′
trt+1r

′
t+1xt, (6)

we can interpret the terms in Equation (5) in the following way: first, the vectors x′
trt+1

correspond to the (FT × 1) returns of portfolios with weights xiT (i = 1, . . . , FT ) and the

(FT × 1) vector µT carries their past average values. Likewise, Σ
(P )
T is equal to the (FT ×

FT ) sample covariance matrix of the characteristics-based portfolios inferred from their past

returns. It is nonsingular as long as τ > FT . The scaled instantaneous covariance matrix of

the time-T characteristics (Σ
(x)
T ) is invertible when NT > FT . Lastly, the vector σ

(w̄)
T measure

the covariance between the benchmark portfolio and the characteristics-weighted portfolios.

Therefore, in the unconstrained case (λ∗ = 0), the optimal parameter θ∗
T (λ

∗) in Equation (5)

can be decomposed in two components: the first is equal to the maximum Sharpe portfolio where

the assets are the characteristics-based portfolios, and the second is an adjustment stemming

from the covariance with the benchmark starting point.7

Next, we discuss the mechanics of the optimization embedded in Equation (5). First, when

the past returns and firm characteristics are given, λ∗ is entirely driven by δT and as δT decreases

to zero, the constraint becomes more binding and λ∗ increases to infinity. Mechanically, the

magnitude of the values of θ∗
T decline, which is the sought effect. In the limit δT decreases

to zero, λ∗ increases to infinity and of course θT goes to zero as well. More technically, the

constraint (3) acts like a regularization à la Tikhonov: if the sample size is too small (τ ≤

FT ), the unconstrained problem is ill-conditioned, but adding the constraint guarantees the

existence and uniqueness of a solution, as long as the number of assets exceeds the number of

characteristics (which is always the case in practice).8

The second important variable in Equation (5) is the risk aversion parameter. In the second

7If N assets have expected returns vector µ and covariance matrix Σ, then a standard result of the mean-

variance framework is that the maximum Sharpe ratio portfolio is

{
argmax

w

w′µ√
w′Σw

, 1′
Nw = 1

}
= Σ−1µ

1NΣ−1µ .

8Formally, the quadratically constrained quadratic program (4) is equivalent, for some real number λ, to the
penalized quadratic program

min
θT

‖AθT − b‖22 + λ‖θT ‖2Σ(x)
T

,

where A = (γ2Σ
(P )
T )1/2 and b = (γ2Σ

(P )
T )−1/2(γσ

(w)
T −µT ) and ‖X‖2Y = X ′Y X. This program is a generalized

ridge regression and the regularization intensity, λ, is entirely determined by δT .
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factor of the product, it is straightforward that the relative importance of the past average

values µT decreases when risk aversion increases. In fact, when γ increases to infinity, the

solution converges to

θT = −

[
T−1∑

t=T−τ

x′
trt+1r

′
t+1xt

]−1

×

[
T−1∑

t=T−τ

x′
trt+1r

′
t+1w̄t

]
,

and this expression is expected to generate a low variance portfolio because infinite risk aversion

corresponds to a utility function that focuses only on the quadratic term.

Going back to the simple form (1), we see that the policy is a combination of a benchmark

portfolio plus FT portfolios (one for each characteristic) with weights equal to the elements of θT .

When (2) is unconstrained, the magnitudes of the elements of θT are such that the benchmark

is diluted in the characteristics portfolios. However, with the introduction of the constraint

(3), the weights are progressively shrunk towards the benchmark portfolio as the constraint

becomes tighter. Thus, imposing a strong constraint is only efficient if the benchmark is well

chosen.

2.4. Choosing δT

The aim of the constraint (3) is to reduce the impact of the adjustment to the benchmark.

As such, the choice of δT determines to what extent the final weights can differ from those

of the equally-weighted starting point. We want to determine a heuristic method to set a

threshold which generates weights significantly different from the extreme cases (zero and full

constraint) and simultaneously reduce the proportion of negative weights so that the leverage

of the portfolio reaches realistic levels. We note yiT for the elements of the vector xTθT and

hence the constraint (3) reads
NT∑
i=1

y2iT = δT . (7)

For any given time T , the distribution of the yiT is difficult to identify in general because

it depends on the characteristics which enter the optimization and also on the signs of the

elements of θT . For simplicity and tractability, we assume that the yiT are i.i.d. and normally

distributed with zero mean and variance equal to δT/NT (given by (7)). This simply means
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that there are many small deviations from the benchmark and a few large ones. Then, we have

the following result.

Lemma 2.1. If the yiT are i.i.d. and follow a N(0, δT/NT ) distribution, then the average

time-T gross leverage of the portfolio is given by

E[LT ] = ν(δTNT ) = 1 +

√
2δTNT

π
e−(2δTNT )−1 − 2Φ

(
−(δTNT )

−1/2
)
, (8)

where Φ is the cumulative distribution function of the Normal law.

The lemma shows that the average gross leverage in this case depends solely on the product

δTNT . Moreover, we also show in the proof of the lemma that this average leverage is strictly

increasing in δTNT . In Figure D.4 we plot this leverage as a function of δTNT . We see that the

leverage is close to 1.2 for δTNT = 1. In their study on hedge fund leverage, Ang et al. (2011)

show that after the 2008 crisis, the average gross leverage for equity funds evolved to between 1.2

and 1.3. With a more recent database, Farnsworth (2014) also reports that leverage remained

at moderate levels between 2008 and 2014. Consequently, notwithstanding the simplification of

Gaussianity, setting δT = N−1
T would imply average leverages close to those observed in recent

periods for the equity hedge fund industry.9 Note that given the range of NT (>500), any

minor change on δT (e.g. taking δT = 1.3/NT instead of δT = 1/NT ) will have no impact on the

results. Significant changes can only be obtained with truly different values of δT (a variation

by a factor 5 or 10 at least). This enables us to set a base case value for δT with which we will

work in the next section. Nevertheless, we will consider other values of δT in Section 4 and in

Section 5. Overall, we find that our main results do not change when varying δT .

9In unreported results, we find that switching to a Student distribution with 3 degrees of freedom gives
strikingly close results. Therefore, our conclusion holds even if the yiT are assumed to be heavy-tailed, i.e. if
the large deviations from the benchmark are more frequent.
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3. Empirical analysis

3.1. Data

The construction of the research universe is detailed in Appendix B and comprises 10,303

companies from 1964 to 2013. In total, the number of companies within our sample grows over

time from 1,353 (in 1969) to a maximum of 2,652 (in 2003). In order to construct characteristics-

based portfolios we have calculated 12 different firm characteristics for each of the sample com-

panies. A list of all characteristics and their abbreviations can be found in Appendix A. The

12 characteristics do not carry redundant information: Panel A of Table 1 provides the average

cross-correlations between all reported characteristics.10 The highest observed correlation is

52%, between the cash-flow over assets (CFA) and the return on assets (ROA).

In Panel B of Table 1, we have computed the autocorrelation of the characteristics with lags

equal to 1, 2, 3, 4 and 5 years. Autocorrelation is computed as the average Pearson correlation

of one firm characteristic on the cross-sectional level lagged by 1 to 5 years. We note that the

firm characteristics are quite stable in the cross-section, except for momentum (MOM ) and the

gross margin variation (GMV ). In contrast, the market equity (MEQ) and variance (VAR) are

the most stable attributes (large firms remain large and low risk firms remain low risk, at least

in relative terms).

3.2. Portfolio construction and key indicators

At the beginning of each year, we compute the portfolio policy according to (1) and (5).

Within the scope of the single and double characteristic portfolios we consider two cases. The

first one is defined with δT = ∞ implying that no constraint is used for the optimization

(unconstrained policy). This case is analog to the case of Brandt et al. (2009) in which every

10Originally, we assessed 16 different firm characteristics but decided to exclude four of them from our study
because they were too correlated with one or more of the 12 we propose. In detail, we have also tested the
variance of the returns over the past 24 months and idiosyncratic risk (standard deviation of the residuals of
the CAPM regression used for the computation of the beta), but they yielded results too close to those of the
60 month variance. Moreover, we found that the ratio of EBIT to MEQ had a 76% correlation with the MOM
characteristic. Consequently, these attributes were withdrawn from our study.
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Panel A: Cross-correlations

Char MEQ BTM DIY LEV MOM VAR ROA CFA GMV ERV CUE AGR

MEQ 1 -0.13 0.07 -0.08 0.08 -0.17 0.12 0.10 0.03 -0.12 0.00 0.06
BTM 1 0.32 0.48 -0.23 -0.11 -0.21 -0.02 -0.11 -0.13 -0.02 -0.20
DIY 1 0.13 -0.11 -0.40 0.01 0.11 -0.09 -0.12 -0.01 -0.14
LEV 1 -0.12 0.04 -0.23 -0.07 -0.08 0.09 -0.02 -0.11
MOM 1 -0.03 0.07 0.11 0.05 -0.04 0.02 0.01
VAR 1 -0.14 -0.15 0.05 0.30 0.00 0.04
ROA 1 0.52 0.17 -0.25 0.04 0.22
CFA 1 0.07 -0.17 -0.01 -0.12
GMV 1 0.00 0.02 0.09
ERV 1 -0.01 0.00
CUE 1 0.06

Panel B: Autocorrelations

Lag MEQ BTM DIY LEV MOM VAR ROA CFA GMV ERV CUE AGR

1 0.88 0.73 0.69 0.77 -0.05 0.89 0.64 0.38 0.61 0.82 0.04 0.26
2 0.80 0.60 0.60 0.63 -0.06 0.78 0.51 0.30 0.31 0.70 0.03 0.14
3 0.74 0.51 0.55 0.54 -0.03 0.66 0.45 0.26 0.07 0.58 0.03 0.09
4 0.68 0.44 0.52 0.46 -0.02 0.56 0.41 0.24 -0.17 0.46 0.02 0.07
5 0.63 0.39 0.49 0.40 -0.03 0.45 0.36 0.21 -0.09 0.39 0.01 0.05

Table 1: Cross-correlation and auto-correlation of firm characteristics. The table displays the correla-
tion of the firm characteristics within the cross-section and across time. A list of all abbreviations can be found
in Appendix A. Char refers to the corresponding firm characteristic: MEQ is the company’s market equity
value, BTM represents the book-to-market value, DIY represents the company’s current dividend yield, LEV
the leverage-ratio, MOM the momentum calculated from t-12 to t-2 and VAR the variance based on 60 monthly
simple returns. ROA represents the return on assets, CFA the company’s cash-flow over assets and GMV the
absolute annual variation in gross-margin, ERV the earnings volatility measured as standard deviation over the
past 20 quarters previous to each regarded year and CUE the annual change in earnings. Finally, AGR stands
for the company’s year-over-year asset growth. The autocorrelation is computed as follows. Each year, we
compute the Pearson correlation of one firm characteristic across all firms with the same characteristic lagged
by one to five years. The correlation is calculated only for the firms with available data and then averaged over
all sample dates.

level of leverage can be attained by the optimization. The second case is set with δT = N−1
T

allowing for an intermediate level between no constraint and maximum constraint (constrained

policy).11 For each of these two cases, we look at the impact of risk aversion on the performance

of the portfolio. Accordingly, we report results for low risk aversion (γ = 1), moderate risk

aversion (γ = 5) and high risk aversion (γ = 10).

11Note that we test other values of δT in our robustness checks.
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The portfolio is held for one year and the weights are then updated using the latest data at

the end of June. This approch assures that every year only the accounting data that is actually

available is used, which assures that our results do not contain any insight bias. Further, since

the final portfolio weights are always calculated only up to the date of portfolio construction,

the reported results show the out-of-sample performance of our constraint. Further, portfolio

returns are calculated on a monthly basis as simple returns. As in Brandt et al. (2009), we use

a calibration sample of τ = 10 years. We study the sensitivity of the results to variations in τ

in Section 5.2. We truncate our sample before 1969 in order to obtain a sufficient number of

companies for which many characteristics are available. Consequently, the allocation starts in

June 1980 and ends in June 2013.

In order to exploit the effect of our constraint on performance, leverage and turnover we

report six different measures. The first is the average of transaction costs (TC). These are

modeled according to the same cross-sectional distribution as that of Brandt et al. (2009):

zi,T = AT (0.006 − 0.0025mei,T ), where mei,T is the time T market equity of stock i, divided

by the time T maximum market equity across all stocks. The AT factor is used to model a

linear decrease of transaction costs in time. However, because our sample is longer than that of

Brandt et al. (2009), we assume that transaction costs in 1980 are five times larger than those

in 2013 (i.e. A1979 = 5 and A2013 = 1). Hence, the transaction cost incurred by stock i at time

T is TCi,T = zi,T × |wi,T − wi,T−|, where wi,T− is the weight in portfolio of stock i just before

the rebalancing. We compute the average annual portfolio transaction costs as

TC =
1

T

T∑
t=1

Nt∑
i=1

TCi,t.

Turning to performance indicators, we compute volatility (Vol) as the standard deviation

of annual returns. The Sharpe ratio (SR) is equal to the annualized return minus the risk

free rate, divided by the portfolio’s annualized volatility.12 In all tables, we test whether the

Sharpe ratio of a portfolio policy is significantly above that of the equally-weighted benchmark

12We use the 3M T-Bill rates, which, over the whole sample, average to a 5.6% annual rate.
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using the bootstrap test of Ledoit and Wolf (2008). Figures are presented in bold font when

the corresponding p-value is smaller than 10%. While the Sharpe ratio is the most natural

performance indicator (overwhelmingly used by practitioners and in the academic literature),

we also choose to quantify the economic gain of the leverage constraint through the TC-adjusted

certainty equivalent excess return (CER).13 As in Goto and Xu (2015), we define it by

CER = µ̂− γ

2
σ̂2 − TC, (9)

where µ̂ is the average annual return of the portfolio, σ̂2 its annualized realized volatility and

γ the individual investor’s risk aversion. The CER can be interpreted as the increase in the

risk-free rate for which the investor would be indifferent between holding cash and holding the

risky portfolio, after accounting for transaction costs. Moreover, in our framework, it can be

viewed as an estimation of realized utility, net of transaction costs.

In order to quantify the leverage of the portfolios, we provide the average proportion of

negative weights (PNW):

PNW =
1

T

T∑
t=1

Nt∑
i=1

1{wi,t<0}

Nt

.

Lastly, we assess the diversification of the portfolios through the average Herfindahl-Hirschman

index (HHI) - here we follow Goetzmann and Kumar (2008):

HHI =
1

T

T∑
t=1

w′
twt.

The L2-norm of the weights is bounded below by 1/N , which is the score of the equally-weighted

portfolio (highest diversification). It increases to infinity as the amplitude of leverage rises.

Consequently, a low HHI signals a high degree of portfolio diversification.

Table 2 provides the results of the introduced key indicators which are obtained for the

equally-weighted policy. Its CER is equal to 0.10 for γ = 1, 0.04 for γ = 5 and -0.03 for γ = 10.

13Note that we do not use a Sharpe ratio discounted by transaction costs in our base case. However, we
perform a related robustness check in Section 5.3.
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SR Vol TC (%) PNW HHI

Equally-weighted benchmark 0.387 0.173 0.549 0.000 0.002

Table 2: Key indicators of the benchmark portfolio. This table displays the results for all key indicators
for the equally-weighted benchmark portfolio. A list of all abbreviations can be found in Appendix A.

3.3. Results for single characteristic portfolio policies

Table 3 shows the results of all single characteristic portfolio policies. The first group of

columns of Panel A displays the absolute values of the Sharpe ratio for the unconstrained

policies, the Sharpe ratios of the constrained case and the ratios of the constrained to the

unconstrained Sharpe ratio (SR ratio). Within the ratio case, a figure smaller one indicates a

decrease in the indicator when switching from unconstrained to constrained optimization. The

last three columns show the difference in CER when imposing our constraint compared to the

unconstrained case (∆CER). Here, a positive figure indicates that the CER has improved when

applying the constraint. As for the SR ratio we report the corresponding ratios for volatility,

transaction costs, proportion of negative weights and HHI in Panel B. A list of all abbreviations

is provided in Appendix A.

Given the purpose of the constraint, we expect the overall levels of leverage and transaction

costs to decrease. Nevertheless, we do not anticipate a monotonous impact on Sharpe ratios

when adding the constraint. Also, we expect that the loss of optimality implied by the constraint

may be mitigated by the reduction of estimation errors, as in Jagannathan and Ma (2003).

First, we analyze the impact of our constraint on the policies’ performance measured by

Sharpe ratio and ∆CER. When looking at the unconstrained Sharpe ratios in Panel A of Table

3, we find that both the choice of risk aversion and the choice of the underlying characteristic

have a significant impact on the resulting out-of-sample performance. For example, the Sharpe

ratio decreases by more than 90% for MEQ when comparing γ = 1 to 10. The cross-sectional

differences for all characteristics for γ = 5 lie between 0.30 and 0.50. In contrast, when intro-

ducing our constraint, this divergence is remarkably reduced: sticking to the example of MEQ,

the Sharpe ratio decreases by 70% instead of 90% when increasing risk aversion. Further, when

regarding the cross-section of all characteristics, the Sharpe ratios for γ = 5 now lie between
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Panel A: Sharpe ratios and CER
SR (unconstrained) SR (constrained) SR ratio ∆CER

γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ 1.15 0.42 0.10 0.57 0.40 0.18 0.50 0.95 1.80 -0.31 0.00 0.02
BTM 0.88 0.46 0.24 0.54 0.43 0.26 0.61 0.93 1.08 -0.16 0.00 0.01
DIY 0.24 0.50 0.52 0.40 0.42 0.44 1.67 0.84 0.85 0.07 -0.01 -0.01
LEV 0.65 0.42 0.25 0.47 0.40 0.27 0.72 0.95 1.08 -0.07 0.00 0.01
MOM 0.71 0.37 0.15 0.50 0.36 0.23 0.70 0.97 1.53 -0.02 0.02 0.04
VAR 0.35 0.49 0.44 0.40 0.45 0.42 1.14 0.92 0.95 0.04 0.00 0.00
ROA 0.64 0.40 0.23 0.46 0.39 0.29 0.72 0.98 1.26 -0.05 0.01 0.03
CFA 0.35 0.44 0.38 0.40 0.37 0.35 1.14 0.84 0.92 0.23 0.03 0.02
GMV 0.13 0.30 0.29 0.34 0.34 0.34 2.62 1.13 1.17 0.17 0.03 0.05
ERV 0.31 0.42 0.37 0.45 0.45 0.41 1.45 1.07 1.11 0.04 0.01 0.02
CUE 0.32 0.39 0.39 0.37 0.37 0.37 1.16 0.95 0.95 0.07 0.01 0.01
AGR 0.99 0.50 0.23 0.50 0.44 0.27 0.51 0.88 1.17 -0.14 0.00 0.02

Panel B: Vol, TC, PNW and HHI
Vol ratio TC ratio PNW ratio HHI ratio

γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ 0.37 1.00 0.94 0.15 0.85 0.63 0.45 0.63 0.00 0.02 0.76 0.55
BTM 0.39 0.95 1.00 0.14 0.88 0.90 0.16 0.50 1.00 0.03 0.77 0.94
DIY 0.73 1.00 1.00 0.20 0.64 0.70 0.23 0.33 0.44 0.08 0.49 0.58
LEV 0.34 0.95 1.00 0.14 0.90 0.88 0.00 0.00 1.00 0.02 0.76 0.85
MOM 0.29 0.86 0.94 0.12 0.66 0.64 0.22 0.44 0.64 0.02 0.57 0.65
VAR 0.37 1.00 1.07 0.21 0.63 0.64 0.07 0.33 0.45 0.04 0.44 0.45
ROA 0.31 0.95 0.94 0.12 0.74 0.59 0.12 0.50 0.38 0.02 0.66 0.42
CFA 0.38 1.13 1.13 0.05 0.20 0.23 0.16 0.21 0.32 0.01 0.07 0.08
GMV 0.52 0.94 0.89 0.09 0.33 0.35 0.14 0.24 0.24 0.01 0.16 0.17
ERV 0.46 1.00 1.00 0.20 0.65 0.63 0.00 0.33 0.50 0.04 0.42 0.34
CUE 0.65 1.00 0.94 0.11 0.38 0.50 0.08 0.25 0.33 0.01 0.10 0.16
AGR 0.35 0.90 0.94 0.08 0.61 0.69 0.21 0.50 0.50 0.01 0.51 0.62

Table 3: Comparison of constrained and unconstrained single characteristic portfolio policies. This
table displays the results for all key indicators and different risk aversions of the constrained and unconstrained
single characteristic based portfolio policy using constraint (3). We report the absolute values for Sharpe ratios
as well as the ratios of constrained to unconstrained key indicators (raw values are available upon request). A
list of all abbreviations can be found in Appendix A. The calculation is done for all 12 firm characteristics:
MEQ is the company’s market equity value, BTM represents the book-to-market value, DIY represents the
company’s current dividend yield, LEV the leverage-ratio, MOM the momentum calculated from t-12 to t-2
and VAR the variance based on 60 monthly simple returns. ROA represents the return on assets, CFA the
company’s cash-flow over assets and GMV the absolute annual variation in gross-margin, ERV the earnings
volatility measured as standard deviation over the past 20 quarters previous to each regarded year and CUE the
annual change in earnings. Finally, AGR stands for the company’s year-over-year asset growth. We compute
the results of the portfolio policy using different risk-aversion values (γ) of 1, 5 and 10. All results are based on
δT = N−1

T . Bold figures indicate a statistically higher Sharpe ratio at a 10% confidence level, compared to the
equally-weighted benchmark.
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0.34 and 0.45 which, again, shows that the performance relies much less on inputs of the op-

timization when using the constraint. This contraction in dispersion has a straightforward

explanation: the constraint imposes that final weights do not fluctuate too far from the bench-

mark weights. As a by-product, this also implies a greater stability of weights through time, as

shown by the reduction of turnover and transaction costs. We do not observe an unconditional

impact of the constraint on the overall levels of Sharpe ratio. This finding also holds when

comparing it to the results of the ∆CER (last three rows of Panel A). Surprisingly, the number

of policies significantly outperforming the benchmark is higher after the introduction of the

constraint (6) than before (4 policies stand out).14 This is a by-product of the reduction of risk

for all policies.

With respect to Panel B of Table 3, we find that the constraint significantly impacts the

volatility, transaction costs, proportion of negative weights and HHI. The impact on volatility

and HHI is stronger for lower risk aversions than for high ones. For example, the decrease

in volatility is 65% for AGR for γ = 1 whereas it is only 6% when γ = 10. However, the

gain in transaction costs and proportion of negative weights is noteworthy: in 50% of all cases

the transaction costs are cut by half and we find that the proportion of negative weights is

even curtailed by 70% on average. These findings show that constrained policies are not only

easier but also better diversified and cheaper to implement for asset managers with leverage

restrictions.

Given the strong impact of the constraint on volatility, transaction costs and leverage and

the rather mixed effect on Sharpe ratios, it appears appealing to take a closer look at the CER.

In Figure 1 we plot the empirical cumulative density function (cdf) of all combinations for

the single (first row), double (second row) and triple (third row) characteristic portfolio policy

for all three levels of risk aversion. The gray lines represent the results of the unconstrained

cases and the black lines those of the constrained cases. The dash-dot vertical line shows the

CER of the equally-weighted portfolio. This illustration allows us to examine the final net

14Notwithstanding the large volatilities when γ = 1. Given that a Sharpe ratio of 0.71 is not found to be
significantly different from 0.39, we may conclude that the test is rather conservative.
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effect of the constraint on all possible combinations of firm-characteristics.15 In the first row

of graphs, we find that the constraint is able to cut off a large amount of underperforming

unconstrained portfolios. For γ = 1 the smallest CER for the unconstrained portfolio is -0.23

whereas the smallest one for the constrained cases is 0.25: an investor would therefore always

prefer the risky constrained portfolio to the safe cash holding alternative. Moreover, Figure

1 shows that a larger proportion of constrained portfolios are able to beat the benchmark,

compared to unconstrained ones. Overall, an investor with no prior preference towards a

particular characteristic benefits from adding the leverage constraint. Investors confident in a

performing characteristic should prefer the unconstrained optimization only if they have a low

risk aversion or if they are absolutely certain that this characteristic will drive excess returns

out-of-sample. In sum, we find that the constraint decreases the risk of model misspecification

and, additionally, reduces estimation risk.

15The first row has 12 points per figure whereas the second and third have 66 and 220, respectively.

19



−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 1 (single char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 5 (single char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 10 (single char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 1 (double char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 5 (double char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 10 (double char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 1 (triple char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 5 (triple char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
γ = 10 (triple char.)

TC adjusted CER

Cu
m

ul
at

ive
 d

en
sit

y

Unconstrained
Constrained

Figure 1: Empirical distribution of the transaction cost-adjusted CER. This figure shows the cumulative distribution function (cdf) of transaction
cost-adjusted certainty equivalent excess return across all combinations of single (first row), double (second row) and triple (third row) characteristic based
portfolio policies. The unconstrained policies are plotted in black and the constrained ones in gray. The first column corresponds to γ = 1, the second to
γ = 5 and the third to γ = 10. The calibration sample size is τ = 10 and the constraint set at δT = N−1

T . The dash-dot line represents the CER of the
equally-weighted benchmark.
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3.4. Results for double characteristic portfolio policies

Having analysed the performance of the single characteristic policies, we now turn to combi-

nations of two characteristics. Twelve characteristics imply 66 pairs. As it is more convenient to

display the results of the most important combinations, we only report the top six and bottom

six policies. The ranking is performed according to the Sharpe ratio of constrained policies for

the intermediate risk aversion (γ = 5). The results are gathered in Table 4.

Similarly as for the single characteristic portfolios, Panel A displays the absolute values of

the Sharpe ratio, the SR ratio as well as ∆CER. Panel B shows the corresponding ratios for

volatility, transaction costs and the proportion of negative weights. With respect to the first

three columns of Panel A, we find that the best pairs outrank single characteristic policies

in terms of Sharpe ratio (1.45 versus 1.15 for γ = 1 and 0.73 versus 0.5 for γ = 5). This

can at least partially be explained by the fact that the set of pairs is larger than the set of

unique attributes (66 versus 12). Comparing the top six entries with the bottom six ones, we

understand that the higher risk-adjusted performance comes from both, a lower volatility and

higher returns. When risk aversion is low or medium, nearly all top Sharpe ratio portfolios

are significantly higher than that of the equally-weighted benchmark. Similarly to the single

characteristic policies, the introduction of the constraint reduces the disparities, both across

levels of risk aversion and across choices of indicators.

Analogously to Table 3, we find in Panel B of Table 4 that the constraint has reduced

volatility, transaction costs, the proportion of negative weights and improves diversification.

Looking at the second row of graphs in Figure 1, we see that for γ = 5 and γ = 10, the cdf

for the constrained policies is almost always below that of the unconstrained policies: there

are only a handful of combinations of characteristics that allow the unconstrained program to

outperform the constrained policies. For γ = 1, there is a trade-off: the constraint limits both

the upside and the downside potential of the parametric portfolios. It is to note, however, that

in 85% of the cases, the constrained policies outperform the benchmark (the proportion goes

down to 65% for unconstrained policies).

Overall, we find that the performance of unconstrained characteristics-based policies de-

pends strongly on both the risk aversion parameter and the underlying firm characteristics.
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Panel A: Sharpe ratios and CER

SR (unconstrained) SR (constrained) SR ratio ∆CER

γ 1 5 10 1 5 10 1 5 10 1 5 10

to
p
S
R

BTM-ERV 0.94 0.73 0.45 0.63 0.54 0.36 0.67 0.75 0.80 -0.20 -0.02 -0.02
DIY-ERV 0.98 0.71 0.40 0.55 0.53 0.47 0.56 0.75 1.18 0.15 0.02 0.04
MEQ-VAR 1.36 0.70 0.31 0.60 0.53 0.31 0.44 0.75 1.00 -0.39 -0.02 0.00
DIY-AGR 1.00 0.69 0.42 0.51 0.52 0.42 0.51 0.75 1.00 -0.15 -0.02 0.02
MEQ-DIY 1.45 0.69 0.31 0.58 0.51 0.31 0.40 0.74 1.00 -0.41 -0.02 0.00
VAR-ERV 0.50 0.65 0.57 0.44 0.51 0.49 0.88 0.79 0.86 -0.02 -0.01 0.01

b
ot
to
m

S
R

ERV-CUE 0.16 0.32 0.29 0.53 0.37 0.22 3.31 1.17 0.76 0.16 0.02 0.04
LEV-MOM 0.63 0.32 0.10 0.46 0.37 0.26 0.73 1.16 2.60 0.00 0.05 0.07
MOM-GMV 0.54 0.31 0.15 0.43 0.36 0.31 0.80 1.17 2.07 0.15 0.06 0.08
MOM-ROA 0.64 0.31 0.11 0.48 0.35 0.25 0.75 1.13 2.27 0.07 0.06 0.07
CFA-GMV 0.21 0.30 0.25 0.36 0.34 0.34 1.71 1.16 1.36 0.40 0.05 0.05
GMV-CUE -0.02 0.23 0.25 0.33 0.32 0.30 -16.5 1.40 1.20 0.30 0.06 0.08

Panel B: Vol, TC, PNW and HHI

Vol ratio TC ratio PNW ratio HHI ratio

γ 1 5 10 1 5 10 1 5 10 1 5 10

to
p
S
R

BTM-ERV 0.34 1.04 1.07 0.14 0.53 0.57 0.17 0.37 0.44 0.02 0.32 0.37
DIY-ERV 0.30 1.03 1.14 0.04 0.30 0.46 0.10 0.32 0.38 0.01 0.35 0.44
MEQ-VAR 0.35 1.01 1.14 0.12 0.59 0.62 0.40 0.58 0.47 0.01 0.35 0.47
DIY-AGR 0.29 0.84 0.88 0.06 0.41 0.38 0.15 0.29 0.39 0.01 0.36 0.37
MEQ-DIY 0.38 0.94 1.00 0.11 0.53 0.59 0.41 0.40 0.37 0.01 0.41 0.45
VAR-ERV 0.31 0.94 0.93 0.17 0.41 0.43 0.04 0.30 0.46 0.01 0.22 0.26

b
ot
to
m

S
R

ERV-CUE 0.45 1.36 1.20 0.20 0.68 0.56 0.21 0.87 0.78 0.02 0.26 0.18
LEV-MOM 0.29 0.88 0.89 0.09 0.32 0.31 0.02 0.22 0.31 0.02 0.22 0.25
MOM-GMV 0.26 0.81 0.89 0.05 0.30 0.32 0.13 0.29 0.29 0.01 0.16 0.20
MOM-ROA 0.29 0.85 0.89 0.10 0.35 0.45 0.22 0.36 0.50 0.01 0.15 0.23
CFA-GMV 0.33 0.96 0.94 0.03 0.18 0.21 0.12 0.15 0.21 0.01 0.10 0.11
GMV-CUE 0.50 0.99 0.90 0.07 0.34 0.37 0.17 0.33 0.33 0.01 0.12 0.13

Table 4: Comparison of constrained and unconstrained double characteristic portfolio policies. This
table displays the results for the key indicators and different risk aversions of the constrained and unconstrained
single characteristic based portfolio policy using constraint (3). We report the absolute values for Sharpe ratios
as well as the ratios of constrained to unconstrained key indicators (raw values are available upon request). A
list of all abbreviations can be found in Appendix A. The calculation is done for all 66 pairs. We compute the
results of the portfolio policy using different risk-aversion values (γ) of 1, 5 and 10. All results are based on
δT = N−1

T . Bold figures indicate a statistically higher Sharpe ratio at a 10% confidence level, compared to the
equally-weighted benchmark.

Therefore, an investor should be very careful when choosing these crucial inputs. The in-

troduction of the leverage constraint reduces the discrepancies across both dimensions (risk

aversion and choice of characteristic) and hence curtails the risk of ill-advised decisions. Fi-

nally, the constraint is again able to improve diversification and reduce the leverage in the

double characteristic framework and it diminishes the reported transaction costs.
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4. Model extensions

In this section we aim to exploit the high flexibility of our new constraint which enables new

applications and model extensions. Given that market equity (MEQ) and the book-to-market

ratio (BTM) are the two most frequently cited attributes in the literature, we have decided to

rely on a portfolio policy of these two for all empirical analyses in this section.

4.1. Constraining on transaction costs

Instead of constraining the portfolio leverage, the investor might be interested in enforcing

an upper bound on the trading costs pertaining to his or her portfolio choice.16 While recent

articles have integrated transaction costs in optimization schemes (e.g. Brown and Smith (2011)

and Garleanu and Pedersen (2013)), none of them, to the best of our knowledge, imposes explicit

constraints on trading costs.

We recall that time-T transaction costs are computed as TCT = z′
T∆wT , where zT is the

vector of all individual trading costs and ∆wT = wT − wT− gathers all changes in portfolio

composition. In order to derive a closed-form solution, we again resort to an L2 constraint and,

similarly to our base case result, we can show that

λ∗
T = inf {λ > 0, z′

T × |w̄T + xTθ
∗
T (λ)−wT−| < tc∗}

applied to (5) leads to the desired upper bound (tc∗) on transaction costs, as long as this bound

is reachable. In the equation above, zT is the vector of transaction costs detailed in Section

3.2. We provide the values of the key indicators for increasing values of tc∗ in Table 5.

We highlight that since the structure of transaction costs evolves through time, tc∗ is in fact

an average target, computed with prior knowledge of the transaction cost behavior between

1970 and 2012. This explains why there are some discrepancies between tc∗ and the actual

transaction costs reported in the table. Moreover, when strong changes occur in the investment

universe, we allow the constraint to be mildy relaxed so that it can be satisfied.

16We thank an anonymous referee for suggesting this extension of the model.
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γ = 1 γ = 5

tc∗ Vol SR TC PNW CER HHI tc∗ Vol SR TC PNW CER HHI
0.8 0.19 0.45 0.95 0.01 0.11 0.2 0.8 0.18 0.39 0.94 0.03 0.03 0.2
1.2 0.21 0.56 1.33 0.09 0.14 0.3 1.0 0.18 0.41 1.11 0.08 0.04 0.3
1.6 0.22 0.65 1.73 0.17 0.16 0.5 1.2 0.19 0.43 1.26 0.11 0.04 0.3
2.0 0.24 0.72 2.08 0.21 0.18 0.7 1.4 0.19 0.47 1.32 0.15 0.04 0.5
2.4 0.26 0.80 2.46 0.26 0.21 1.0 1.6 0.18 0.49 1.48 0.18 0.05 0.6
2.8 0.28 0.86 2.79 0.29 0.23 1.4 1.8 0.19 0.49 1.52 0.20 0.05 0.6
3.2 0.29 0.89 3.04 0.31 0.24 1.8 2.0 0.18 0.49 1.64 0.19 0.05 0.6

Table 5: Constraining transaction costs. This table displays the results for all key indicators for policies
based on the double characteristic portfolio policy BTM-MEQ when the target for transaction costs (tc∗)
decreases. A list of all abbreviations can be found in Appendix A. Bold figures indicate a statistically higher
Sharpe ratio at a 10% confidence level, compared to the equally-weighted benchmark. Transaction costs and
HHI are expressed in percent.

The results are in line with those of the preceding subsection if we acknowledge that leverage

constraints and TC constraints share an almost bijective relationship. A looser TC constraint

leads to higher Sharpe ratios but fewer diversified portfolios. Overall, investor welfare (when

measured by the CER) decreases when the TC constraint is tight. We highlight that this

conclusion could change if the TC penalization embedded in the CER was stronger.

4.2. Time-varying leverage and risk aversion

As shown empirically by Ang et al. (2011) and Farnsworth (2014), the leverage of asset

managers is not constant through time. Moveover, leverage is likely to depend on risk-aversion.

Indeed, leverage measures the amplitude of the bets within a long/short portfolio and this

amplitude is usually smaller in times of uncertainty. Given the flexibility of our constraint to

adjust to different levels of leverage we extend our model to state-dependent leverage and risk

aversion over time.

We proceed with three different state variables which will impact leverage: volatility (volatile

markets are expected to reduce investor appetite for leverage), term spread (a positive spread

signals economic growth, see Estrella and Mishkin (1998)) and credit spread (hard credit con-

ditions impact firm performance negatively, see Demchuk and Gibson (2006)). Accordingly, we

allow both γ and δT to depend on one of these variables in the following way:

γt = γmax
(vt
v̄
, 0.2

)
, δt = N−1

t max

(
v−1
t

v−1
, 0.2

)
, (10)
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where v is the value of the state variable which is in an increasing bijection with risk aversion

(i.e. volatility, credit spread and the inverse of the term spread) and v̄ its time-series average.

We set a floor of 0.2 so that both leverage and risk aversion remain inside an interval of (1/5,

5) times the target value. We provide a graphical representation of the time-series of all three

state variables in Figure 2.

1980 1985 1990 1995 2000 2005 2010
0

1

2

3

4

5

6

Credit Spread
Volatility

Term Spread

State variables

Figure 2: State variables for time-varying leverage and risk aversion. Volatility is computed as the
standard deviation of daily returns over the past year. Term spread is the difference between the 30Y and the
3M US Treasury constant maturity yields. Credit spread is equal to the Moodys Baa minus Aaa corporate
bond rates. All variables are normalized so that their average equals one. We only display values from 1980
onwards because this is when the allocation process begins.

Moreover, we test the case where the state variable is equal to the average value of the

three variables, once they have been normalized to reach unit mean. The base case indicators

summarizing the performance of this extension of our model are collected in Table 6.

In three out of four cases, adjusting both the risk aversion and the level of leverage to

macro-economic indicators improves not only the Sharpe ratio, but also the CER. However,

it should be noted that the resulting portfolios have a slightly higher proportion of negative

weights and are consequently less diversified (their HHI is larger than that of the original

method). In unreported results, we find that allowing only the risk aversion or the leverage

(but not both) to be time-dependent yielded CERs which were far less competitive. This
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Key indicators

State variable Vol SR TC PNW CER HHI

Volatility 0.197 0.523 1.56 0.132 0.046 0.49
Credit spread 0.190 0.578 1.37 0.119 0.062 0.52
Term spread 0.265 0.709 3.11 0.174 0.037 1.48
Equal mix 0.194 0.581 1.58 0.134 0.059 0.51

Constant leverage and γ 0.188 0.467 1.05 0.092 0.045 0.31

Table 6: Time-varying leverage and risk aversion. This table displays the results for all key indicators
based on the double characteristic portfolio policy BTM-MEQ when leverage and risk aversion are driven by
state variables. The equal mix of variables is the mean of all three variables, once they have been normalized
so that their mean is equal to one. For the base case, we fixed γ = 5 and δT = N−1

T . A list of all abbreviations
can be found in Appendix A. Transaction costs and HHI are expressed in percent.

confirms that leverage should be a function of risk aversion and not set alone by itself.

4.3. Does adding characteristics increase value?

Scrutinizing all possible combinations of characteristics and picking the best one for a given

criterion amounts to pure data snooping. We therefore take a broader view and make use of

the numerous combinations at hand to understand if feeding the optimization with additional

characteristics improves the policies overall. To this purpose, we comment on the graphs of

Figure 1.

The fact that the cumulative density functions do not shift to the right when going from the

upper graphs to the lower graphs does not make a clear case for an overall superiority of triple

characteristic policies. We illustrate this finding with a simple example: for the constrained

double characteristic portfolio policy, the top two choices for γ = 5 are BTM-ERV and DIY-ERV

with Sharpe ratios of 0.54 and 0.53, respectively (see Table 4). The constrained policy based on

BTM, DIY and ERV has a Sharpe ratio of 0.51 for γ = 5. As such, an intuitive combination of

three seemingly well performing characteristics does not necessarily add value. This is further

confirmed by the ‘kitchen sink’ combination of MEQ, BTM, DIY, VAR, ERV and AGR (which

have led to high Sharpe ratios in previous settings): for a risk aversion parameter of 5, it shows

a Sharpe ratio of 0.51 with the leverage constraint and 0.4 without.

However, we document a stability in the indicators which are associated to high Sharpe

ratios. With respect to unconstrained triple characteristic policies and among the 10 highest
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Sharpe ratios for γ = 5, the BTM, ERV and AGR characteristics are those with the highest

number of occurrences (5 each). For constrained policies, it is ERV (seven times among the

top 10 Sharpe ratios), MEQ (six times) and DIY (five times). This is consistent with what

we observed for double characteristic portfolios, except that VAR (resp. MEQ) featured more

(resp. less) within the best combinations. The momentum attribute is never present among

the best performing combinations.

Our results show that the addition of more characteristics does not necessarily increase the

performance of the strategy. For example, when comparing the classical MEQ-BTM pair with

the MEQ-BTM-MOM triplet across constrained versus unconstrained optimizations with γ = 1

or γ = 5, we find that the triplet never outperforms the pair in terms of Sharpe ratio. Moreover,

the triplet is always associated to higher transaction costs. Accordingly, in our framework, an

investor would be better off with only the size and book-to-market attributes. Thus, it seems

that compiling characteristics does not improve performance, apart for a few particular cases

which can only be identified via data mining. Overall, we believe that retaining two (or three)

characteristics is a reasonable choice for investors.

5. Robustness checks and sensitivity analysis

The goal of this section is to show the robustness of our results to variations in the allocation

parameters. We also depend the understanding of the methodology by performing several

sensitivity analyses and emphasize the robustness of our results by showing that our conclusions

hold when using CRRA utility.

5.1. Sensitivity to the leverage constraint

Investors have heterogeneous leverage constraints, not only among them, but also across

time (Ang et al. (2011) show that between 2005 and 2010, average gross leverage for equity

hedge funds oscillated between 1.1 and 1.3.). In all previous numerical applications so far,

we have set the bindingness of the leverage constraint to δT = N−1
T since it is a reasonable

compromise between zero and the full constraint. However, this level might be too tight or too

loose, depending on whether the investor is a hedge fund or a pension fund. Table 7 shows

27



the sensitivities of the key indicators with respect to the bindingness of the leverage constraint

(δT ) based on the double characteristic portfolio policy BTM-MEQ. In order to investigate

the impact of variations in this parameter, we report the key indicators when δT = N−κ
T and

κ ∈ (0.0, 0.1, . . . 2) so that NT ranges between N−2
T and 1, which are the two bounds of Lemma

2.1.17

γ = 1 γ = 5

κ Vol SR TC PNW CER HHI Vol SR TC PNW CER HHI

1.9 0.18 0.37 0.67 0.00 0.10 0.18 0.18 0.35 0.65 0.00 0.03 0.18
1.8 0.18 0.37 0.69 0.00 0.10 0.18 0.18 0.36 0.66 0.00 0.03 0.18
1.7 0.19 0.38 0.71 0.00 0.10 0.18 0.18 0.36 0.67 0.00 0.03 0.18
1.6 0.19 0.39 0.73 0.00 0.10 0.18 0.18 0.37 0.69 0.00 0.03 0.18
1.5 0.19 0.41 0.77 0.00 0.11 0.18 0.19 0.37 0.71 0.00 0.03 0.18
1.4 0.19 0.43 0.82 0.00 0.11 0.19 0.19 0.39 0.74 0.00 0.03 0.19
1.3 0.20 0.46 0.89 0.01 0.12 0.20 0.19 0.40 0.79 0.01 0.03 0.20
1.2 0.20 0.50 1.00 0.03 0.13 0.22 0.19 0.42 0.85 0.02 0.04 0.22
1.1 0.21 0.55 1.14 0.07 0.14 0.27 0.19 0.44 0.94 0.05 0.04 0.26
1.0 0.22 0.61 1.35 0.13 0.15 0.35 0.19 0.47 1.05 0.09 0.05 0.31
0.9 0.23 0.68 1.62 0.19 0.17 0.48 0.19 0.50 1.21 0.15 0.05 0.39
0.8 0.25 0.76 2.01 0.24 0.19 0.74 0.19 0.51 1.38 0.20 0.05 0.50
0.7 0.27 0.87 2.55 0.30 0.23 1.21 0.18 0.52 1.58 0.22 0.05 0.66
0.6 0.30 0.96 3.24 0.33 0.27 2.03 0.19 0.53 1.68 0.24 0.05 0.79
0.5 0.35 1.05 4.20 0.36 0.32 3.60 0.19 0.53 1.68 0.24 0.05 0.79
0.4 0.38 1.11 5.12 0.38 0.35 5.27 0.19 0.53 1.68 0.24 0.05 0.79

Table 7: Sensitivity to changes in the bindingness of the leverage constraint. This table displays the
results for all key indicators based on the double characteristic portfolio policy BTM-MEQ when decreasing the
intensity of the leverage constraint. We fixed δT = N−κ

T for κ ∈ (0.4, 0.5, . . . , 1.9). The case κ = 0.4 is equivalent
to the unconstrained policy. A list of all abbreviations can be found in Appendix A. Bold figures indicate
a statistically higher Sharpe ratio at a 10% confidence level, compared to the equally-weighted benchmark.
Transaction costs and HHI are expressed in percent.

Note that the figures in Table 7 do not exactly converge to those of the equally-weighted

benchmark because for some stocks one of the attributes (MEQ or BTM) was not available

which excluded them from the optimization. As expected, the transaction costs and the pro-

portion of negative weights decrease as the constraint becomes tighter (i.e. when κ increases).

This effect is especially pronounced for γ = 1.

In the case of low risk aversion (γ = 1), both the Sharpe ratio and the volatility strongly

decrease with κ. For a more moderate risk aversion, the Sharpe ratio decreases, whereas the

17Note that we do not report results for κ < 0.4 because the values do not change below this threshold.
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volatility remains nearly constant. For γ = 1, we find that for κ = 1.3, the policies are close to

a long-only policy (less than 1% of short-sales) and the Sharpe ratio raises to 0.46, from 0.37

when κ = 1.9 (highly constrained program). Fine-tuning the constraint therefore allows us to

keep very low leverage while improving the risk-adjusted potential of the portfolio.

Lastly, we see that when risk aversion is low, the CER increases when the constraint loosens

since the investor does not mind to holding a highly volatile portfolio. However, this is no

longer true for a moderate risk aversion and, consequently, no economic benefit is obtained for

a constraint level which is above N−1
T .

5.2. Sensitivity to sample size

From equation (4), we see that θT is chosen such that it would have maximized the expected

utility of the investor given past values of characteristics and returns. In our base case compu-

tations, we have used rolling samples of τ = 10 years to successively calibrate the values of θT .

This choice is somewhat arbitrary and it is legitimate to wonder whether shorter sample sizes

would lead to improvements or not.18 Indeed, large samples give old data as much importance

as recent data, while it is not obvious that the cross-sectional predictive power of characteristics

remains stable over time. As such, calibrating on smaller samples may allow θT to adjust more

rapidly, especially in times of turbulence.

Table 8 reports the impact of estimation sample size on all indicators for the double charac-

teristic portfolio policy BTM-MEQ. For unconstrained portfolios (first five columns), we observe

that the Sharpe ratio is slightly decreasing with τ , but we cannot observe any monotonous im-

pact on volatility, nor on CER. In contrast, transaction costs and leverage decrease with τ . For

transaction costs, this is quite straightforward, as longer sample size implies more stability of

θT through time.

When leverage constraints are enforced (last six columns), the Sharpe ratio decreases with

τ , while the volatility remains constant, which means that average returns are higher when the

estimation sample size is smaller. Transaction costs and leverage are strongly reduced compared

18Brandt et al. (2009) also consider 10 years of past data. In our mean-variance framework, we recall that τ
must be strictly larger than the number of characteristics for unconstrained policies to be well defined.
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Unconstrained policies Constrained policies

τ Vol SR TC PNW CER HHI Vol SR TC PNW CER HHI

10 0.17 0.61 2.40 0.28 0.06 1.47 0.19 0.47 1.05 0.09 0.04 0.31
9 0.19 0.62 2.39 0.28 0.06 1.28 0.19 0.49 1.06 0.09 0.05 0.28
8 0.19 0.61 2.57 0.26 0.06 1.25 0.19 0.50 1.08 0.08 0.05 0.25
7 0.19 0.60 2.61 0.25 0.05 1.24 0.19 0.49 1.12 0.08 0.05 0.23
6 0.20 0.61 2.69 0.24 0.05 1.38 0.19 0.49 1.11 0.08 0.05 0.21
5 0.21 0.65 2.72 0.24 0.06 1.51 0.20 0.50 1.14 0.08 0.04 0.20
4 0.19 0.62 3.59 0.26 0.05 1.88 0.19 0.52 1.18 0.07 0.05 0.18
3 0.21 0.70 4.43 0.29 0.05 2.29 0.19 0.52 1.22 0.06 0.05 0.17

Table 8: Sensitivity to the estimation sample size. This table displays the results for all key indicators
for policies based on the double characteristic portfolio policy BTM-MEQ when the estimation sample size (τ)
decreases. In all cases, the allocation process starts in 1980: for τ < 10, the data is truncated accordingly. In
the case of the constrained policies, we fixed δT = N−1

T and γ = 5. A list of all abbreviations can be found in
Appendix A. Bold figures indicate a statistically higher Sharpe ratio at a 10% confidence level, compared to the
equally-weighted benchmark. Transaction costs and HHI are expressed in percent.

to the unconstrained policies. In short, this means all indicators remain stable when reducing

the estimation sample with the Sharpe ratio increasing marginally. This is possible because

of the regularization effect of the constraint. Without the constraint, reducing the estimation

sample implies a bad conditioning of the sample covariance matrix of the characteristics-based

portfolios and θT becomes progressively degenerate. For example, when τ = 2, ΣT in (6) is

singular and it is possible to compute θT using the Moore-Penrose inverse. This leads to a

negative Sharpe ratio.

Overall, the unconstrained optimization can only generate reasonable weights if the sample

size is large enough. This drawback is circumvented when adding the constraint. Moreover,

constrained policies seem to deliver better risk-adjusted performance with shorter sample sizes.

For the sake of completeness, we also have computed the indicators across all sample sizes,

all risk aversions and all characteristics. Over all of these combinations, switching from un-

constrained to constrained optimization leads to a reduction in transaction costs which is at

least equivalent to 10% and can reach up to 93%. For the proportion of negative weights, the

minimum reduction is 37% and the maximum one is 90%. The impact on volatility oscillates

between a 20% rise (a rare phenomenon which only appears for γ = 10) and a decrease of 71%.

In line with our prior results, there is no particular pattern for the evolution of the Sharpe
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ratio.19

5.3. Impact of transaction costs on the Sharpe ratio

To this point, we have reported the gross Sharpe ratio in all tests without the inclusion of

transaction costs. However, as suggested by the recent literature, transaction costs can have

a significant impact on characteristics-based investment strategies. For example, Novy-Marx

and Velikov (2016) find that the mitigation of transaction costs is crucial when looking at

net returns of such strategies. So far, our findings have underlined that the presence of the

constraint shrinks both the turnover and the transaction costs. Hence, when considering the

impact of the constraint, we expect an even more favorable impact on transaction cost-adjusted

Sharpe ratios. Table 9 shows the results of three different characteristics-based strategies when

comparing raw- and transaction cost adjusted Sharpe ratios.20 The transaction cost-adjusted

Sharpe ratio is computed as the first moment of returns minus the risk free rate minus the

transaction costs divided by the second moment of returns (transaction costs are subtracted

from returns at each date). As in the previous case, bold figures indicate a statistically higher

Sharpe ratio at the 10% confidence level based on the Ledoit and Wolf (2008) test.

Raw Sharpe ratio Transaction cost-adjusted Sharpe ratio

Unconstrained Constrained Unconstrained Constrained

γ 1 5 10 1 5 10 1 5 10 1 5 10

MEQ-BTM 1.33 0.61 0.23 0.61 0.47 0.23 1.19 0.48 0.11 0.55 0.41 0.18
MEQ-BTM-MOM 1.33 0.54 0.14 0.62 0.47 0.24 1.13 0.31 -0.08 0.55 0.41 0.17
Kitchen sink 0.73 0.40 0.28 0.63 0.51 0.35 0.21 0.13 -0.19 0.57 0.46 0.27

Table 9: Comparison of raw- and transaction cost-adjusted Sharpe ratios. This table displays the re-
sults for raw- and transaction cost-adjusted Sharpe ratios for the constrained and unconstrained characteristics-
based portfolio policy using constraint (3). The Kitchen sink set contains the assortment of the best performing
firm characteristics: MEQ, BTM, DIY, VAR, ERV, and AGR. We compute the results of the portfolio policy
using different risk-aversion values (γ) of 1, 5 and 10. All results are based on δT = N−1

T . Bold figures indicate
a statistically higher Sharpe ratio at a 10% confidence level, compared to the equally-weighted benchmark.

The Sharpe ratios are in line with our prior findings on raw Sharpe ratios, but tend to be

even higher. Indeed, we observe that the constraint has a larger impact when controlling for

19The results are available upon request.
20The kitchen sink strategy contains the best single and double firm characteristics: MEQ, BTM, DIY, VAR,

and AGR.
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transaction costs for many firm characteristics. This is particularly true for the kitchen sink

combination: the transaction cost-adjusted Sharpe ratios of constrained portfolios are equal

to three times their unconstrained counterparts. This increase in net Sharpe ratio is a direct

consequence of the reduction of transaction costs induced by the constraint: the numerator of

the unconstrained Sharpe ratio is strongly negatively impacted while the denominator remains

roughly unchanged. When constraints are enforced, the variation of both terms is much smaller.

From a practical point of view, this means that the implementation of constrained portfolio

policies becomes even more beneficial when net returns are considered.

5.4. CRRA preferences

In this subsection, we explore the impact of the constraint in the setting of CRRA prefer-

ences, notwithstanding the technical caveats related to this choice of utility function (u(x) =

−x−γ/γ).

We gather our results in Table 10 for all indicators when the intensity of the constraint

varies and when assuming a CRRA utility function. As in Table 7, we find a general trend:

a loosening of the constraint leads to higher transaction costs, volatility, negative portfolio

weights and Sharpe ratios. However, in contrast to the quadratic utility case, the absolute

levels are significantly higher (few investors can cope with a volatility of 101%). An HHI

of 50% means that the magnitude of the weights is far beyond what can be implemented in

practice. Transaction costs go up to 17.3% for κ = 0.1, the proportion of negative weights

up to 45% and the CER down to minus 138%. These large values do not only underline the

necessity of our constraints but also the problems associated with CRRA discussed in Section

2.2. Lastly, we observe that the highest values of the CER are reached for values of κ close to 1,

which confirms that our initial choice of δT is relevant and that the policy should be constrained

so as to generate reasonable (i.e. implementable) results.

5.5. Comparison with Brandt et al. (2009)

This subsection is intended to show the added value on investor welfare of a quadratic

constraint compared to the approach of Brandt et al. (2009) who propose a heuristic way of

obtaining long-only portfolios by setting negative weights to zero and rescaling positive weights
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Key indicators

κ Vol SR TC PNW CER HHI

0.1 1.01 1.26 17.3 0.45 -1.38 52.72
0.2 0.77 1.22 12.2 0.44 -0.60 27.56
0.3 0.60 1.18 8.8 0.43 -0.22 14.73
0.4 0.47 1.12 6.4 0.41 -0.04 7.91
0.5 0.38 1.04 4.7 0.39 0.04 4.29
0.6 0.32 0.96 3.5 0.36 0.07 2.36
0.7 0.28 0.87 2.7 0.32 0.08 1.34
0.8 0.25 0.78 2.1 0.26 0.07 0.79
0.9 0.23 0.69 1.7 0.19 0.07 0.50
1.0 0.21 0.62 1.3 0.13 0.06 0.35
1.1 0.20 0.55 1.1 0.06 0.05 0.27
1.2 0.20 0.49 1.0 0.02 0.05 0.22
1.3 0.19 0.45 0.9 0.01 0.04 0.20
1.4 0.19 0.42 0.8 0.00 0.04 0.19
1.5 0.19 0.39 0.7 0.00 0.03 0.18
1.6 0.19 0.36 0.7 0.00 0.03 0.18

Table 10: Sensitivity to leverage constraint with CRRA preferences. This table displays the results for
all key indicators based on the double characteristic portfolio policy BTM-MEQ for CRRA when the intensity
of the leverage constraint increases. We fixed γ = 5 and δT = N−κ

T for κ ∈ (0.1, 0.2, . . . , 1.6). A list of all
abbreviations can be found in Appendix A. Transaction costs and HHI are expressed in percents.

so as to fulfill the budget constraint. As in Fan et al. (2012) and Coqueret (2015), we argue

that a small proportion of negative weights is an effective compromise between large levels of

leverage and no short-selling at all.

In order to compare our methodology with the two alternatives of Brandt et al. (2009),

we adopt the following protocol. First, given the caveats of the power utility function shown

in the previous subsection, we restrain our analysis to quadratic utility. Also, for the sake of

robustness, we will report the results for several values of risk aversion. Brandt et al. (2009),

carry out their optimizations over three characteristics: firm size (MEQ), book-to-market ratio

(BTM) and past annual return (MOM). Accordingly, we will proceed with the exact same

triplet of characteristics. Lastly, we perform the allocation on ten subsamples extracted from

our original database. This will allow us to have several points for comparison purposes and

reduces the risk of sample-dependence of our results.21 The subsets are constructed as follows:

Given the original ordering of the companies in the dataset (in increasing Compustat GVKEY),

21We thank Abraham Lioui for suggesting this enhanced protocol.
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we split the firms according to the last number of their ranking (firms n◦6, 16, 26, 36, etc. belong

to the same group). We then proceed with the allocation steps and compute the CER of all

strategies. We choose the CER as the driving indicator because it synthesizes the first two

moments of returns, risk aversion and transaction costs in one simple metric. We restrict the

values of risk aversion to all integers between 2 and 9 because they embed all the levels that

seem acceptable by asset managers on the market (values above 9 do not change the allocation

much and those below 2 lead to very aggressive and volatile portfolios).

Figure 3 shows the excess average in CER of the constrained strategy, net of the average

of either alternatives of Brandt et al. (2009) (unconstrained or long-only after cutting negative

weights and rescaling). The black bars represent the case in which leverage is allowed whereas

the gray bars show the results when leverage is set to zero.22 Further, we show the excess

standard deviation in which a negative value stands for a lower return volatility when applying

our constraint.

When leverage is allowed (black bars), we find a positive average excess CER for all levels of

risk aversion. Moreover, the standard deviations of the CER show that this gain is quite stable

across different investment universes. Notably, the gains are increasing with γ. When leverage

is prohibited (gray bars), we find a positive impact of our constraint for levels of risk aversion

of above γ = 4. For risk seeking investors it is more favorable to use the truncated version of

Brandt et al. (2009) instead of setting the leverage to zero via the constraint. However, one

should be aware of the fact that cutting off negative weights and rescaling afterwards creates

large bets on fewer stocks. Consequently, this approach significantly reduces the diversification

of the portfolio.23

Overall, we find that when directly comparing our constraint to the framework of Brandt

et al. (2009) the introduction of the constraint leads to an increase in investor welfare for nearly

all cases. This lets us conclude that in order to fully exploit the possibilities and advantages of

the original optimization, investors should fine-tune the leverage of their portfolios.

22In our framework, the constraint is tightened until all negative weights disappear.
23In unreported tests we find significantly higher degrees of diversification when applying the constraint

compared to truncating the negative weights.
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Figure 3: Comparison with Brandt et al. (2009). The bars represent the excess average CER (over the
10 subsamples) of the constrained strategy, net of the average of either alternatives of Brandt et al. (2009)
(unconstrained or long-only after setting negative weights to zero and rescaling). Likewise, Excess Std. Dev.
refers to the excess standard deviation of the CER.

6. Conclusion

We address several so far unsolved shortcomings of characteristics-based portfolio optimiza-

tion. With the introduction of a leverage constraint into the modified framework of Brandt

et al. (2009), we present an approach which reduces the dispersion of weights around an ag-

nostic prior: the equally-weighted portfolio. Based on an out-of-sample empirical analysis from

1969 to 2013, we find that portfolio policies which include our constraint exhibit significantly

lower levels of leverage compared to unconstrained policies, while keeping up similar Sharpe

ratios and CER. The constraint facilitates the implementation in practice and is attractive

for investors who are restricted to given levels of leverage. It is also flexible and can be both

investor-dependent and time-varying.

In addition, we observe that our constraint leads to a significant reduction in discrepancy

across characteristics, which lowers the odds of abnormal underperformance (very low or nega-

tive Sharpe ratios) subsequent to a poor choice of characteristics. With respect to variations in
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risk aversion, it turns out that constrained policies have a smaller dispersion in Sharpe ratios

when switching from high to low risk aversion. Consequently, constrained policies seem less

model-dependent and more robust. This is typically useful because quantifying an investor’s

risk aversion is usually not straightforward in practice. We also find that constrained poli-

cies have much lower levels of turnover and transaction costs compared to their unconstrained

counterparts. Finally, constraints are also advantageous because they imply exposures to char-

acteristics (and the possibly related risk factors) that do not evolve too abruptly.

With regard to the selection of characteristics, we have worked with a set of 12 firm charac-

teristics, thereby broadening the canonical size-value-momentum paradigm. In fact, while we

acknowledge that market equity and book-to-market indicators do yield above average Sharpe

ratios, we do not find that past returns (i.e. momentum) are likely to add any further value.

This latter attribute is unstable and often generates higher turnover. According to our findings,

firm characteristics which should be considered by investors include: dividend yields, variance

of returns, variance of earnings, and asset growth. Lastly, we conclude that adding more than

two characteristic does not benefit the policies.

Overall, our approach enhances the applicability of characteristics-based portfolio choice

and provides new insights into numerical optimization with respect to risk aversion, sample

size, and constraint tightness.
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Appendix A. Abbreviations

Firm characteristics

AGR Year-over-year asset growth
BTM Book-to-market
CFA Cash-flow over assets
CUE Annual change in earnings
DIY Current dividend yield
ERV Earnings volatility
GMV Absolute annual variation in gross-margin
LEV Leverage-ratio
MEQ Market equity
MOM Momentum return
ROA Return on assets
VAR Return variance

Key indicators

PNW Proportion of negative weights
SR Sharpe ratio
TC (%) Transaction costs (in percent)
Vol Portfolio volatility
CER TC-adjusted certainty equivalent return
HHI Average Herfindhal-Hirschman Index

Model parameters

γ Risk aversion parameter
δT = N−κ

T Tightness of the leverage constraint
τ Estimation sample size in years

Table A.11: Abbreviations of firm characteristics, key indicators and input parameters. The table
shows the definition of the used abbreviations for all firm characteristics, key indicators and input parameters
within the article. The firm characteristics show the abbreviation of all 12 individual firm characteristics
that were regarded in our analysis. A more detailed description can be found in Appendix B. The group of
key indicators consist of the measures which are used to evaluate the performance and characteristics of the
constrained and unconstrained portfolio policies. A detailed description of all key indicators can be found in
Section 3.2. Finally, we specify input parameters as those variables which are varied for the understanding
of the input sensitivities of the optimization algorithm. NT is the number of firms within the scope of the
optimization at time T .
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Appendix B. Data

We proceed in several steps. First, we restrict our sample to all companies of the North

America Compustat database which have at least 10 years of business activity. Consequently,

all firm characteristics and return data come from the CRSP/Compustat Merged Database

(CCM). We calculate the firm characteristics at the end of June each year from 1964 to 2013

and the first years are kept to calculate lagged returns (the final firm characteristics are reported

from 1967 onwards). We consider common/ordinary security types only (tpci = 0) to avoid

influences of issue-specific attributes. We use annual data for fundamentals and monthly data

for prices and total returns.

In the following we describe the calculation of our firm characteristics. As in Brandt et al.

(2009), we calculate the company’s book equity as total assets (CCM item: AT) minus total

liabilities (CCM item: LT) plus deferred taxes and investment tax credit (CCM item: TXDITC)

minus the preferred stock value (CCM item: PSTK). A company’s market equity (MEQ) is

determined as the price per share (CCM item: PRCCM) times the number of common shares

outstanding (CCM item: CSHO). The book-to-market ratio (BTM) is defined as book equity

divided by market equity. We calculate the current dividend yield DIY as total dividends

(CCM item: DVP and DVC) divided by the number of common shares outstanding times

the share price. The computation of leverage (LEV) follows Bhandari (1988): the leverage of

a company is the difference of total assets and the book value of equity divided by market

equity. Momentum (MOM) is based on returns from t-12 months to t-2 months and relies on

price data only. In contrast, we evaluate the variance of the returns (VAR) based on total

returns over the past 60 months. Return on assets (ROA) is seen as the ratio of income before

extraordinary items (CCM item: IB) and total assets. The firm’s cash-flow over assets (CFA)

is calculated as net income (CCM item: NI) plus depreciation (CCM item: DPC) minus the

change in net working capital (CCM item: WCAPCH) minus capital expenditures (CCM item:

CAPX) divided by the firm’s total assets. GMV is the five year absolute variation in the firm’s

gross margin, whereas the margin is calculated as revenue (CCM item: REVT) minus costs of

goods sold (CCM item: COGS) divided by total sales. Finally, we introduce earnings volatility
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(ERV) as the standard deviation of the firm’s return-on-assets over the past 20 quarters. Both

the annual change in earnings (CUE) and asset growth (AGR) are computed as in Hand and

Green (2011): simple growth rate of the change in net income or total assets, respectively.

Lastly, we exclude negative data values for MEQ, BTM, DIY, LEV and VAR. We also

eliminate the 20% of the firms with the smallest market equity and all values which lie five

standard deviations above (or below) the cross-sectional average each year.
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Appendix C. Proof of Proposition 2.1

We recall the following matrix notations: wT and rt+1 are the (N×1) vectors corresponding

to wi,T and ri,t+1 respectively and xt is the (N × F ) concatenation of the xi,t vectors. The

Lagrangian associated to the problem (4) is

G(θT ) =
1

T

T−1∑
t=T−τ

NT∑
i=1

(w̄i,t + θ′
Txi,t) ri,t+1 −

γ

2T

T−1∑
t=T−τ

[
NT∑
i=1

(w̄i,t + θ′
Txi,t) ri,t+1

]2
− λ (θ′

Tx
′
TxTθT − δT )

=
1

T

T−1∑
t=T−τ

(w′
t + θ′

Tx
′
t) rt+1 −

γ

2T

T−1∑
t=T−τ

(w̄′
t + θ′

Tx
′
t) rt+1r

′
t+1 (xtθT + w̄t)

− λ (θ′
Tx

′
TxTθT − δT )

and hence,

∂G

∂θT

(θT ) =
1

T

T−1∑
t=T−τ

x′
trt+1 −

γ

T

T−1∑
t=T−τ

(
x′
trt+1r

′
t+1w̄t + x′

trt+1r
′
t+1xtθT

)
− 2λx′

TxTθT ,

so that the first order condition implies that

θT =

[
2λTx′

TxT + γ
T−1∑

t=T−τ

x′
trt+1r

′
t+1xt

]−1

×

[
T−1∑

t=T−τ

x′
trt+1 − γ

T−1∑
t=T−τ

x′
trt+1r

′
t+1w̄t

]
.

We underline that the conditions τ > FT and NT > FT ensure that the inverse matrix is well-

defined. The remaining degree of freedom, λ, is chosen such that condition (3) is satisfied. The

second order condition straightforwardly implies that the solution is indeed a maximum point.

If δT is very large, then the problem is unconstrained. If the problem is indeed constrained, then

as λ increases to infinity, θ′
Tx

′
TxTθT continuously (but not necessarily monotonously) decrease

to zero and any value δT can be reached (this can be formally shown using the strictly positive

(since NT > FT ) eigenvalues of x
′
TxT , as in A in Coqueret (2015)).
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Appendix D. Proof of Lemma 2.1

We have

E[LT ] = E

[
NT∑
i=1

|wiT |

]
= E

[
NT∑
i=1

∣∣∣∣ 1

NT

+ yiT

∣∣∣∣
]
=

NT∑
i=1

E
[∣∣∣∣ 1

NT

+ yiT

∣∣∣∣]

Now, the |1/NT + yiT | are i.i.d. folded Normal variables. Using the formula for the mean of the

folded normal distribution (see Chakraborty and Chatterjee (2013) for instance), we get

E[LT ] =

NT∑
i=1

[√
δT
NT

×
√

2

π
e−(2δTNT )−1

+
1

NT

(
1− 2Φ

(
−(δTNT )

−1/2
))]

,

which, after elementary simplifications, yields the result, where

ν(x) = 1 +
√

2x/πe−1/(2x) − 2Φ(−x−1/2).

We plot this function below. Moreover, this function is strictly increasing on R+ because:

ν ′(x) =
(1 + x)e−1/(2x)

√
2πx3/2

− e−1/(2x)

√
2πx3/2

=
xe−1/(2x)

√
2πx3/2

> 0, x > 0.
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Figure D.4: Plot of ν.

41



References

Ang, A., Gorovyy, S., Van Inwegen, G. B., 2011. Hedge fund leverage. Journal of Financial

Economics 102 (1), 102–126.

Arnott, R. D., Hsu, J., Moore, P., 2005. Fundamental indexation. Financial Analysts Journal

61 (2), 83–99.

Asness, C., Frazzini, A., Pedersen, L. H., 2013. Quality minus junk. Working paper available

at SSRN.

Bhandari, L. C., 1988. Debt/equity ratio and expected common stock returns: empirical evi-

dence. Journal of Finance 43, 507–528.

Boudt, K., Wauters, M., Ardia, D., 2014. Characteristic-based equity portfolios: Economic

value and dynamic style-allocation, working paper available at SSRN.

Brandt, M. W., Santa-Clara, P., Valkanov, R., 2009. Parametric portfolio policies: Exploiting

characteristics in the cross-section of equity returns. Review of Financial Studies 22 (9),

3411–3447.

Brown, D. B., Smith, J. E., 2011. Dynamic portfolio optimization with transaction costs:

Heuristics and dual bounds. Management Science 57 (10), 1752–1770.

Campbell, J., Lo, A., MacKinlay, A., 1997. The econometrics of financial markets. Princeton

University Press.

Carhart, M. M., 1997. On persistence in mutual fund performance. Journal of Finance 52 (1),

57–82.

Chakraborty, A. K., Chatterjee, M., 2013. On multivariate folded normal distribution. Sankhya:

The Indian Journal of Statistics 75 (1), 1–15.

Coqueret, G., 2015. Diversified minimum variance portfolios. Annals of Finance 11 (2), 221–241.

42



Daniel, K., Titman, S., 1997. Evidence on the characteristics of cross sectional variation in

stock returns. The Journal of Finance 52 (1), 1–33.

Daniel, K., Titman, S., 1998. Characteristics or covariances? The Journal of Portfolio Manage-

ment 24 (4), 24–33.

Demchuk, A., Gibson, R., 2006. Stock market performance and the term structure of credit

spreads. Journal of Financial and Quantitative Analysis 41 (04), 863–887.

DeMiguel, V., Garlappi, L., Nogales, F. J., Uppal, R., 2009a. A generalized approach to portfolio

optimization: Improving performance by constraining portfolio norms. Management Science

55 (5), 798–812.

DeMiguel, V., Garlappi, L., Uppal, R., 2009b. Optimal versus naive diversification: How inef-

ficient is the 1/N portfolio strategy? Review of Financial Studies 22 (5), 1915–1953.

Estrella, A., Mishkin, F. S., 1998. Predicting us recessions: Financial variables as leading

indicators. Review of Economics and Statistics 80 (1), 45–61.

Fama, E. F., French, K. R., 1992. The cross-section of expected stock returns. Journal of

Finance 47, 427–465.

Fan, J., Zhang, J., Yu, K., 2012. Vast portfolio selection with gross-exposure constraints. Jour-

nal of the American Statistical Association 107 (498), 592–606.

Farnsworth, G., 2014. Strategic hedge fund leverage and investor welfare: A holdings-based

approach. Working Paper.

Garleanu, N., Pedersen, L. H., 2011. Margin-based asset pricing and deviations from the law

of one price. Review of Financial Studies 26 (6), 1980–2022.

Garleanu, N., Pedersen, L. H., 2013. Dynamic trading with predictable returns and transaction

costs. Journal of Finance 68, 2309–2340.

Geweke, J., 2001. A note on some limitations of CRRA utility. Economics Letters 71, 341–345.

43



Goetzmann, W. N., Kumar, A., 2008. Equity portfolio diversification. Review of Finance 12 (3),

433–463.

Goto, S., Xu, Y., 2015. Mean variance portfolio optimization with sparse inverse covariance

matrix. Journal of Financial and Quantitative Analysis (forthcoming).

Hand, J. R., Green, J., 2011. The importance of accounting information in portfolio optimiza-

tion. Journal of Accounting, Auditing & Finance 26 (1), 1–34.

Hentschel, L., Long, J. B., 2004. Numerical solution of the static portfolio problem for power

utility investors. Working paper.

Hjalmarsson, E., Manchev, P., 2012. Characteristic-based mean-variance portfolio choice. Jour-

nal of Banking & Finance 36 (5), 1392–1401.

Jacobs, B., Levy, K., 2013. Leverage aversion, efficient frontiers, and the efficient region. Journal

of Portfolio Management 39 (3), 54–64.

Jacobs, B., Levy, K., 2014. Traditional optimization is not optimal for leverage-averse investors.

Journal of Portfolio Management 40 (2), 30–40.

Jacobs, B. I., Levy, K. N., 2007. 20 myths about enhanced active 120-20 strategies. Financial

Analysts Journal 63 (4), 19–26.

Jagannathan, R., Ma, T., 2003. Risk reduction in large portfolios: Why imposing the wrong

constraints helps. Journal of Finance 58 (4), 1651–1684.

King, R., Plosser, C. I., Rebelo, S. T., 2002. Production, growth and business cycles: Technical

appendix. Computational Economics 20, 87–116.

Ledoit, O., Wolf, M., 2008. Robust performance hypothesis testing with the Sharpe ratio.

Journal of Empirical Finance 15 (5), 850–859.

Lo, A. W., Patel, P. N., 2008. 130/30: The new long-only. The Journal of Portfolio Management

34 (2), 12–38.

44



Markowitz, H., 1952. Portfolio selection. Journal of Finance 7 (1), 77–91.

Novy-Marx, R., Velikov, M., 2016. A taxonomy of anomalies and their trading costs. Review

of Financial Studies 29 (1), 104–147.

Pflug, G. C., Pichler, A., Wozabal, D., 2012. The 1/N investment strategy is optimal under

high model ambiguity. Journal of Banking & Finance 36 (2), 410–417.

Plyakha, Y., Uppal, R., Vilkov, G., 2012. Why does an equal-weighted portfolio outperform

value-and price-weighted portfolios? Working paper available at SSRN.

Rytchkov, O., 2014. Asset pricing with dynamic margin constraints. The Journal of Finance

69 (1), 405–452.
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