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Are Correlations Constant? Empirical and Theoretical 
Results on Popular Correlation Models in Finance 

Abstract 

Multivariate GARCH models have been designed as an extension of their 
univariate counterparts. Such a view is appealing from a modeling perspective 
but imposes correlation dynamics that are similar to time-varying volatility. In 
this paper, we argue that correlations are quite different in nature. We 
demonstrate that the highly unstable and erratic behavior that is typically 
observed for the correlation among financial assets is to a large extent a 
statistical artefact. We provide evidence that spurious correlation dynamics 
occur in response to financial events that are sufficiently large to cause a 
structural break in the time-series of correlations. A measure for the 
autocovariance structure of conditional correlations allows us to formally 
demonstrate that the volatility and the persistence of daily correlations are not 
primarily driven by financial news but by the level of the underlying true 
correlation. Our results indicate that a rolling-window sample correlation is 
often a better choice for empirical applications in finance. 

 

Keywords: Change-point tests; correlation breaks; dynamic conditional 
correlation (DCC); multivariate GARCH models; spurious 
conditional correlation. 
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1  Introduction 

Multivariate GARCH models have been designed as extensions of their univariate 

counterparts. Engle, Granger, and Kraft (1984) present an early version as “a bivariate 

generalization of Engle’s ARCH model”. This view is conceptually appealing and has found 

widespread use in practice. In this paper, we argue that the nature of dynamic correlations is 

very different from that of conditional volatilities. While important economic and financial 

news such as economic activity, interest rate changes, and oil prices affect the volatility of 

financial assets, the relevance and impact of this news is often similar across firms. As a 

consequence, volatility is constantly exposed to news and therefore time-varying by nature 

but correlation changes are only observable after major economic events. For instance, 

correlations substantially increased for many financial assets following the burst of the Dot-

com bubble in 2001 or the default of Lehman Brothers in September 2008 (Ofek and 

Richardson, 2003; Wied, Krämer, and Dehling, 2012) but correlations are generally 

insensitive to changes in macroeconomic variables such as interest rates or inflation (King, 

Sentana, and Wadhwani, 1994; Karolyi and Stulz, 1996). We demonstrate how current 

conditional correlation models tend to impose purely artificial dynamics on estimated 

conditional correlations and show why in empirical applications the estimated parameters 

governing the dynamics are often statistically significant despite the fact that underlying 

correlations are constant. 

The correlation matrix is the input to many applications in finance and several recent 

studies seem to believe in the importance of time-varying correlations. For instance, 

Moskowitz (2003) emphasizes the significance of dynamic conditional correlations during 

recessions and periods of financial distress. Similarly, Adrian and Brunnermeier (2016) argue 

that MGARCH models are important for capturing the dynamic evolution of systemic risk. 

DeMiquel, Garlappi, and Uppal (2009) claim that allowing for time-varying moments could 
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increase the performance of optimal asset allocation. The notion of constant correlations 

therefore has important implications for financial modeling and practice. Under a constant 

correlation matrix, international asset portfolios may not have the same degree of 

diversification than comparable portfolios based on dynamic correlations, portfolio 

optimization could generate different weights, and risk measures may indicate different levels 

of risk. The aim of our research is not to dismiss dynamic correlation modeling altogether, 

but to provide a critical perspective on popular models that are routinely used to generate 

estimates of dynamic asset correlations. 

The analysis in this paper is based on Engle’s (2002) Dynamic Conditional Correlation 

(DCC) model. The main advantage of the DCC approach is its parsimonious specification 

which simplifies interpretation and allows even large asset portfolios to be estimated within 

seconds. Over the last years, the DCC model has therefore become well-established in both 

research and practice.1 In Appendix A of this paper, we show that our results also hold for 

other popular MGARCH models, which tend to generate very similar dynamics.2 To illustrate 

its behavior, consider the conditional correlations between the daily returns of the S&P 500 

and the NASDAQ index from 1990 to 2014 shown in Figure 1. Two characteristics that are 

typical for conditional correlations generated by MGARCH models stand out. First, 

conditional correlations undergo large swings over a short period of time. In the 1990’s, 

                                                 
1 For instance, the DCC model has been used in value-at-risk estimation (Pérignon and Smith, 2010), the 

analysis of asset class comovements (You and Daigler, 2010; Heaney and Sriananthakumar, 2012), the 

implementation of hedging strategies (Chang, McAleer, and Tansuchat, 2011), and the examination of 

correlation responses to announcement effects (Brenner, Pasquariello, and Subrahmanyam, 2009), among 

others. 
2 Only models that have become accepted in practice and can be applied with reasonable effort and speed 

are part of our robustness section. This includes MGARCH models with autoregressive covariances such as the 

corrected DCC model of Aielli (2013), the diagonal VECH model of Bollerslev, Engle, and Wooldridge (1988), 

or the diagonal BEKK model of Engle and Kroner (1995). It excludes more complex MGARCH specification 

such as the regime-switching model of Pelletier (2006). For a classification of MGARCH models we refer the 

reader to Bauwens, Laurent, and Rombouts (2006).  
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correlations frequently moved within a wide range between 0.52 in July 1993 and 0.94 in 

November 1997. In the literature, this observation has been sometimes interpreted as 

evidence that the underlying correlation structure is a highly volatile process (e.g., 

Pukthuanthong and Roll, 2011; Sadorsky, 2012). Second, the fluctuation in conditional 

correlations often changes over time. In Figure 1, correlations are highly volatile during the 

1990’s but enter a more tranquil period in 2000. During this time, the daily volatility of 

correlations dropped approximately by half. In this paper, we show that the large fluctuations 

during the 1990’s and the small fluctuations during the 2000’s have no fundamental 

economic cause but are purely artificial results generated by the DCC model. 

<< Figure 1 about here >> 

We demonstrate that the volatility of estimated conditional correlations ̂  is a negative 

function of the underlying true correlation level  : The fluctuations in conditional 

correlations ̂  are large when the correlation level   is close to zero and small when   

approaches 1 . In Figure 1, this causes the volatility to decrease drastically as conditional 

correlations reach values of 0.9 and beyond. In fact, we argue that for financial assets, 

underlying true correlations   are generally constant and that the fluctuations generated by 

autoregressive-type multivariate GARCH models are spurious. They are caused by infrequent 

economic disruptions that shift the level of correlations. We recognize that correlations can 

and do change from time to time. For instance, Longin and Solnik (1995), Bera and Kim 

(2002), and Forbes and Rigobon (2002) show that correlations among financial assets 

increase during economic crises and times of financial distress. However, our claim is that 

these level shifts are a very different type of dynamics than the daily autoregressive 

fluctuations that are suggested by MGARCH models. 

To substantiate our claim, we test for breaks in the otherwise constant correlation 

structure using a recent correlation change-point detection algorithm developed by Galeano 
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and Wied (2014). This algorithm is a repeated application of the change-point test developed 

by Wied, Krämer, and Dehling (2012) and is able to identify level shifts that are associated 

with important financial or economic events. We illustrate this point in Figure 2, where we 

repeat the daily DCC correlations from the previous graph but superimpose the constant 

correlations including their level shifts. The algorithm of Galeano and Wied (2014) suggests 

that the underlying true correlation was initially constant during the five year period from 

1990 to 1994. The change-point tests indicate a shift in the correlation structure in December 

1994 which corresponds to the Mexican peso crisis. More correlation breaks followed: the 

Asian crisis in 1997, the burst of the Dot-com bubble which had its climax in March 2000, 

and the default of Lehman brothers in September 2008. The detection algorithm finds no 

evidence for additional correlation changes within each subsample. We therefore claim that 

much unlike conditional volatility, the true underlying correlations   are likely to be 

constant.3  

<< Figure 2 about here >> 

Our claim is in line with a number of empirical findings. Tse and Tsui (1999) 

investigate a number of tests aimed at detecting time-varying correlations through linear 

dependence in cross products of standardized residuals. They demonstrate that the tests 

correctly indicate model misspecification when a MGARCH model with constant conditional 

correlations (Bollerslev, 1990) is fitted to the data but the true DGP is a MGARCH model 

with dynamic conditional correlations. However, when applied to empirical data, most 

studies fail to detect linear dependence (Bollerslev, 1990; Tang, 1995; Tse, 2000). A number 

                                                 
3 The assumption that daily correlations lie exactly on a straight line between breakpoints may be too 

strong. For instance, daily trading noise and price fluctuations in S&P500 and NASDAQ stocks is likely to 

generate small changes in the correlation structure even between breakpoints. However, the Wied, Krämer, and 

Dehling (2012) test indicates that those changes are not statistically significant and unlikely to reflect 

economically relevant changes. Our main arguments in this paper do not depend on the straight line assumption 

and have the same importance when we allow for correlation noise between breaks. 
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of studies have therefore relied on a constant correlation specification such as Bollerslev 

(1990) for European currencies quoted against the U.S. dollar, Longin and Solnik (1995) and 

Bera and Kim (2002) for national stock market returns, and Kroner and Ng (1998) for returns 

of small and large firm portfolios. Further evidence is provided by Tse (2000) who derives a 

Lagrange Multiplier test for constant conditional correlations. He finds this test to have high 

empirical power if the true DGP is a BEKK or a DCC-type model. Nevertheless, for several 

assets he fails to reject the null of constant conditional correlations.4 

Given the substantial differences between the volatile DCC correlations in Figure 2 and 

the constant correlations that we claim describes the true underlying correlation structure, an 

important question is why the DCC parameters that govern the estimated correlation 

dynamics are often found to be statistically significant in empirical studies. Our empirical 

results show that statistical significance is much less important than expected. Although 

statistical significance decreases when we control for correlation breaks, the main difference 

in correlation dynamics is caused by a change in the size of parameter estimates. These size 

changes have important consequences for correlation dynamics because the interaction 

between correlation parameters is highly nonlinear. As a consequence, even small deviations 

from typical estimates can generate correlations that are either constant or fluctuate randomly 

at low volatility around a constant value. 

The remainder of this paper is structured as follows. In the next section, we show for 

several asset classes that correlation breaks among daily returns are a common phenomenon. 

In section 3 we take a closer look at the impact of breaks on parameter estimates. When 

breaks are controlled for, parameter estimates often lie outside the narrow band that produces 

                                                 
4  In contrast, comparable studies on the behavior of univariate GARCH models find that GARCH 

volatility adequately models the true data generating process (Bollerslev, Chou, and Kroner, 1992). Overall, the 

body of empirical literature over the last two decades lends support to the notion that extending the GARCH 

framework from volatilities to correlations is not as straightforward as previously thought. 
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meaningful correlation dynamics. A theoretical explanation for the results in our paper is 

explored in section 4. We derive an expression for the variance and autocovariance of DCC 

correlations when the true underlying correlations are constant. We show that this expression 

can be decomposed into a general term that is common to all parametric correlation 

estimators, and a model-specific term which adopts the unique characteristics of the 

underlying correlation specification. This allows us to demonstrate how DCC parameters 

cause artificial correlation dynamics. In section 5, we show under which circumstances the 

historical rolling window sample correlation is preferable to a DCC model. Section 6 

summarizes our main results and gives our conclusions. 

2  Correlation Breaks in Daily Asset Returns 

In this paper, we argue that correlations are constant over time, but that financial shocks 

lead to breaks that shift the level of correlations. This section describes the empirical 

evidence concerning breaks in the correlation structure of financial assets. Over a 15-year 

period from 2000 to 2014, the majority of financial assets in our sample experience shocks 

that significantly shift the level of daily correlations. The presence of such correlation breaks 

has implications for the estimation of conditional correlation models. The existing literature 

on univariate volatility models shows that breaks in the volatility dynamics introduce a bias 

in the estimation which results in inaccurate volatility forecasts (Hamilton and Susmel, 1994; 

Hillebrand, 2005; Rapach and Strauss, 2008). However, the findings concerning volatility 

breaks cannot be simply extended to correlations. We show that correlation dynamics are 

exposed to model specific factors that are absent in univariate models of volatility. 

2.1  The Dynamic Conditional Correlation (DCC) Model 

Throughout this paper, our emphasis is on Engle’s (2002) popular mean-reverting 

Dynamic Conditional Correlation (DCC) model. The MGARCH family has grown 
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considerably over the last years and a number of more complex models are better at dealing 

with structural breaks in correlations. For instance, Mittnik and Paolella (2000) propose a 

weighted maximum likelihood procedure that places less weight on observations in the more 

distant past. Pelletier (2006) introduces a regime-switching MGARCH model that allows for 

correlations that are constant within a regime but are different across regimes. However, the 

additional flexibility of these more advanced models comes at the cost of highly sensitive 

parameter estimates and extensive modeling and forecasting implementation. In contrast, 

DCC models are based on a parsimonious specification with correlation specific parameters 

that have an analogous interpretation to parameters of univariate GARCH models. In other 

words, we recognize the contribution of some of these more complex models but point out 

that so far they play only a minor role in most empirical settings. For the main arguments in 

our paper, which are about the dynamic correlations as they are used today, the simple 

canonical specifications are more relevant. Finally, DCC models generate conditional 

correlation dynamics which are similar to more complex MGARCH specifications such as 

BEKK (Engle, 2002; Engle and Colacito, 2006; Caporin and McAleer, 2012) or the corrected 

DCC of Aielli (2013). We therefore expect our results to hold also for other members of the 

MGARCH family. 

For our analysis, we abstract from conditional mean effects, i.e. we assume that 

conditional means are constant. This assumption has no serious implications for daily data 

(Fleming, Kirby, and Ostdiek, 2001) and is common in the literature (West and Cho, 1995). 

Furthermore, and for the sake of simplicity, we only consider the bivariate case. This 

restriction has no implications for our results as DCC model parameters have the same impact 

on each component of the conditional correlation matrix. Hence, all our results apply to 

higher dimensions as well. The bivariate DCC model uses the specification 
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the return equation , , ,i t i t i tr e  and are typically associated with financial shocks or news 

(Engle and Ng, 1993). The tq  are estimated using the expression: 
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 
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   (2) 

with ܽ ൐ 0, ܾ ൐ 0, and ܽ ൅ ܾ ൏ 1. Intuitively, ݍଵଵ,௧  and ݍଶଶ,௧  can be regarded as auxiliary 

estimates of ܧ൫݁ଵ,௧
ଶ ห ௧࣠ିଵ൯ and ܧ൫݁ଶ,௧

ଶ ห ௧࣠ିଵ൯, respectively, where 1t  denotes the information 

set available at time t-1. Similarly, ݍଵଶ,௧ is an auxiliary estimate of ܧ൫݁ଵ,௧݁ଶ,௧ห ௧࣠ିଵ൯. In line 

with this interpretation, Equation (1) simply states rescaling in such a way that ߩො௧ satisfies 

െ1 ൑ ො௧ߩ ൑ 1. If the unconditional correlation between ݁௜,௧ and ௝݁,௧ is the same for all t, then a 

natural choice for the constant ߴ௜,௝ is ܧሺ݁௜,௧ ௝݁,௧ሻ Although this definition of the constant does 

not assure that ܧሺߩො௧ሻ ൌ ሺ݁௜,௧ܧ ௝݁,௧ሻ , most empirical applications are based on this 

specification. For this reason and because setting ߴ௜,௝ ൌ ሺ݁௜,௧ܧ ௝݁,௧ሻ considerably simplifies the 

analysis, we hence refrain from adjustments suggested in Aielli (2013) and refer to Caporin 

and McAleer (2008) for a detailed discussion. The parameter a models the sensitivity of tq  to 

the arrival of news ,i te . If a is close to zero, correlations dynamics are insensitive to shocks 

and approximate a straight line. The parameter a therefore plays a special role in our paper. In 

contrast, the parameter b measures the persistence in correlations. A low b value generates 

correlations that fluctuate randomly at low volatility around a straight line.5  

                                                 
5 An alternative measure of persistence that is sometimes used in the univariate GARCH literature is the 

sum of a and b (Hillebrand, 2005). Although the effectiveness of b depends on a reasonable value for a 



11 

2.2  A Correlation Breakpoint Test 

To identify and locate change points in the correlation structure of financial assets we 

implement a simple and effective algorithm proposed by Galeano and Wied (2014) and Wied, 

Krämer, and Dehling (2012). In contrast to classical tests for breaks in time-series regression 

(e.g., Quandt, 1960; Davis, 1977) the methodology does not require possible break dates to 

be specified in advance but uses an algorithm for sequential breakpoint detection.6 

This algorithm involves the following steps: Consider a sample of T observations of 

the returns vector 1, 2,( , )t tr r  . Let t  denote the true but unknown unconditional correlation 

between tr ,1  and tr ,2  at time t. The algorithm tests the null hypothesis of constant correlations 

against the alternative hypothesis of a change-point ct , i.e. 

 tH :0  for all  Tt ,...,1  (3) 

versus 

 1,...,1:1  TtH c . such that 
1

 cc tt
 . (4) 

The procedure is based on the model-free fluctuation-type test (WKD test henceforth) 

originally proposed by Wied, Krämer, and Dehling (2012). The test statistic is defined as 

2

ˆ ˆ ˆ: max | |T t T
t T

t
Q D

T
 

 
  , (5) 

where ˆ
t  is the sample correlation over the period 1 to t. The purpose of the scalar 

coefficient D̂  is to rescale the volatility of ˆ
t  which tends to be higher at the beginning of 

the sample when only a few observations are available. The coefficient D̂  is described in 

                                                                                                                                                        
(somewhere between 0.02 and 0.06) the actual persistence is governed by the size of b. We therefore rely on b 

as a measure of persistence throughout the paper. 
6 An alternative correlation break point methodology is the test proposed by Andreou and Ghysels (2002, 

2003). The results in our paper do not change significantly under this alternative test. To conserve space, we do 

not report the results here but instead focus on the test of Wied, Krämer, and Dehling (2012). 
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more detail in Appendix B. Under the null hypothesis and several reasonable moment and 

dependency restrictions, the test statistic TQ  is asymptotically Kolmogorov distributed 

(Wied, Krämer, and Dehling, 2012, Theorem 1).7 If TQ  stays below the upper critical value 

the null hypothesis of constant correlation cannot be rejected and the algorithm stops. 

Otherwise, 0H  is rejected and the correlation sample contains at least one change-point ct . 

The estimator for the single change-point is defined as 

ˆ ˆ ˆarg max | |c
t T

t

t
t D

T
   . (6) 

To identify further change-points, the sample is split into the two subsamples ]ˆ,...,1[ ct  and 

],...,1ˆ[ Tt c  . These subsamples are then both tested individually. This procedure is repeated 

until no further change-points are detected. Galeano and Wied (2014) demonstrate that the 

presence of multiple change-points can affect the test’s efficiency in identifying the true 

number of change points. The last step of the algorithm therefore consists of a refining 

process in which the vector of the n detected change-points 1̂
ˆ[ ,..., ]c c
nt t  , sorted in ascending 

date order 
c
n

c tt ˆ...1̂  , is verified in subsamples containing only a single change point. For 

the implementation of the refining process we define the first observation of the sample as 

0̂ 0ct  , the last observation as 1
ˆc
nt T  , and form the subsamples 1 1

ˆ ˆ[ 1,..., ]c c
i it t   for 1,...,i n . 

Each subsample starts at the first observation following the previous change-point 1
ˆc
it  , 

includes change point ˆc
it , but ends just before the next change-point 1

ˆc
it  . These subsamples 

are tested individually. If the null hypothesis is not rejected the change-point contained in the 

subsample is removed from  . 

                                                 
7 See assumptions A.1 to A.5 in Wied, Krämer, and Dehling (2012). In particular, it is assumed that  

{ 1, 2,( , )t tr r } is near-epoch dependent. For an extensive discussion see Davidson (1994, Ch. 17). 
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We give a brief example to illustrate the test procedure. We test for a break in the daily 

correlation between the returns of the FTSE100 index and the returns of the Dutch AEX 

index. If we test the full sample from 01/03/2000 to 11/28/2014 we detect one significant 

change-point at 01/17/2008. In the next step, we split the data in the two subsamples 

[01/03/2000–1/17/2008] and [01/18/2008–11/28/2014]. We test the two subsamples 

individually and find another change-point in the first subsample at 08/31/2001. The test 

statistic in the second subsample is insignificant. The presence of the second change-point 

interferes with the test statistic for the first change-point that was detected using the entire 

sample. The last step therefore involves a refining process in which we test the subsamples 

[01/03/2000–01/17/2008] and [09/01/2001–11/28/2014]. The test statistics for both 

subsamples remains significant and confirms the presence of both change-points:  

[08/31/2001, 01/17/2008]. Galeano and Wied (2014) demonstrate that this procedure detects 

the correct number of correlation change-points.  

We apply the WKD test to the daily returns of 40 assets over the period 01/03/2000 to 

12/31/2014 (3914 obs.). Our data covers the asset classes stocks, bonds, commodities, and 

currencies. Each asset class is represented by 10 major indices or currency pairs. Appendix C 

lists the constituents in detail. We obtain  1 2 1 780n n    correlation time series to be 

tested for breaks. Panel A in Figure 3 shows the distribution of breaks over time. Intuitively, 

correlation breaks should cluster around dates that are associated with important financial 

shocks. Panel A indicates that this is in fact the case. The two events that appear to have 

influenced correlations most are the failure of two Bear Stearns funds in July 2007 and the 

bankruptcy of Lehman Brothers in September 2008. If we look at the table of correlation 

breaks in Panel B we see that 420 return pairs, or more than half of the assets in our data 

experienced exactly one correlation break. More than two correlation breaks is much less 
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common. In 26% of cases, the WKD test did not identify a significant change in correlations.8 

Finally, Panel C shows how correlations change after a break. Since small changes are likely 

to be statistically insignificant the distribution shows a distinct bimodal shape. Financial 

crises tend to increase the comovement among assets which can explain the higher positive 

mode. In fact, the majority, or 61% of correlation changes are positive. The largest negative 

drop in average correlations is -0.68. The largest positive jump is as high as 0.58. The 

average positive or negative correlation change is around 0.18. From our findings in Figure 3 

we conclude that correlation breaks in financial assets is a common phenomenon and that the 

change in correlations following a break is often large. In the following section, we 

investigate the consequences of breaks on DCC parameter estimates which govern the 

dynamics of conditional correlations. 

<< Figure 3 about here >> 

3  The Impact of Correlation Breaks on DCC Parameter Estimates 

Over the 15 year period from 2000 to 2014, the majority of financial assets experienced 

at least one correlation break. If correlation breaks are a prevalent characteristic of financial 

assets, the question is how this affects the parameters that govern the correlation dynamics. 

To answer this question, we use the 40n   assets from the previous section and obtain 

 1 2 1 780n n    correlation time series. First, we collect the DCC parameter estimates over 

the full sample from 03/01/2000 to 12/31/2014 (3,914 obs.). In a second step, we re-estimate 

the parameters running the model over the subsamples between correlations breaks.9 We 

obtain 780 DCC parameter pairs for the full samples and 1,596 parameter pairs for the 

subsamples. In the following, the full sample estimates serve as our control group while the 

                                                 
8 This appears to be particularly the case for assets that had very low correlations to begin with. 

9 We exclude five observations before and after the break to remove possible transition effects that occur 

around the break date. 
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subsample estimates are our treatment group. To allow for a direct comparison between the 

two groups we need to ensure that the full sample correlations contain at least one correlation 

break. In addition, we exclude correlations that are already constant in full samples. This 

occurred in a number of cases in which the DCC a parameter was close to zero.10 We discuss 

this important situation in more detail in Section 4. Finally, we remove subsamples that 

contain less than 500 observations to ensure that our results are not driven by small sample 

windows. Our final sample consists of 355 full sample correlations and 802 subsample 

correlations. 

Panel A of Figure 4 shows the descriptive statistics of DCC parameters and compares 

full samples to subsamples. We find an average value for DCC a of 0.021 and for DCC b of 

0.97 which are in line with findings from other studies. For instance, Engle and Sheppard 

(2001) investigate the daily returns of the DJIA index and report 0.01 and 0.96 for DCC a 

and b, respectively. Engle and Colacito (2006) investigate the daily returns of the S&P 500 

and the 10-year U.S. bond futures contract and report 0.022 and 0.973 for DCC a and b. 

Measured at the 95% confidence level, our parameter estimates are statistically significant in 

91% of all cases. 

<< Figure 4 about here >> 

When we compare these numbers to the estimates found in subsamples the average 

coefficients appear to be quite similar. The average DCC a parameter is close to the full 

sample estimate while the DCC b estimate is somewhat lower. This observation is in line 

with Rapach and Strauss (2008) and Hillebrand (2005) who find that the persistence 

parameter   for univariate GARCH models decreases after accounting for structural breaks 

in volatility. The main change in subsamples parameters, however, does not take place in the 

                                                 
10 We impose the parameter restrictions 0.01 0.06a   and 0.8 0.99b   which will generate a typical 

dynamic correlation behavior. 
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average estimate but in its distribution. For instance, subsample DCC a estimates now range 

between 0 and 0.244 and DCC b values range between 0 and 0.997. Panel B of Figure 4 

illustrates the impact of correlation breaks on the parameter distribution for different asset 

classes in our sample. The distribution of DCC a parameters shows a number of positive 

outliers, in particular in cases when the correlations are measured among stocks, bonds, or 

between mixed assets types. This finding is even stronger when we look at the change in 

distribution of the DCC b parameter. A significant part of the distribution now covers 

parameters below 0.5 which leads to a low persistence in the correlation dynamics. To 

conclude, estimating DCC models in subsamples that contain no breaks has subtle but 

important consequences for DCC parameter estimates. However, it is unclear how the 

changes in DCC parameters affect correlation dynamics. We will explore this issue in the 

following section. 

4  The Impact of Correlation Breaks on Correlation Dynamics 

In this section, we show how breaks in the correlation structure of financial assets affect 

the dynamics of correlation estimators. We derive an expression for the autocovariance 

function of conditional correlations. This expression shows how the autocovariances can be 

separated into a general variance part and a model part which explicitly depends on the 

parameterization of the correlation process. In this context, we compare the results from the 

DCC model to two simple correlation estimators that are popular in practice: the fixed 

parameter exponentially weighted moving average (EWMA) estimator and the historical 

sample correlation estimated in a rolling window.11  In a number of cases, these simple 

alternatives will perform better than a MGARCH-type correlation estimator. 

 

                                                 
11 The EWMA estimator uses fixed parameters proposed by the RiskMetrics group and is therefore 

sometimes called the “RiskMetrics model” (Rapach and Strauss, 2008). 
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4.1  Dynamic Correlation Estimators 

Our first estimator is the rolling window (RW) sample correlation. The (historical) 

sample correlation of asset returns is a simple and popular estimator in applied finance. 

However, it is not just an ad hoc way to measure dynamic correlations. As shown in Foster 

and Nelson (1996) there are several DGPs for which an appropriately specified rolling 

window estimator is optimal. We follow the literature and use this estimator as a benchmark 

to be tested against the performance of more sophisticated MGARCH models (Engle, 2002). 

Again, we can facilitate comparison among estimators by expressing the RW correlation in 

terms of , ,ˆi j tq , which in the case of the rolling window estimator is a function of n equally 

weighted observations ranging from t n  to 1t  : 

1
, , , ,

1

ˆ
n

i j t i t s j t s
s

q n e e
 



  . (7) 

Our second correlation estimator is the fixed parameter Exponentially Weighted Moving 

Average (EWMA) estimator. The implementation of this estimator is just slightly more 

elaborate than a rolling window correlation. The dynamics generated by the EWMA model 

are very similar to MGARCH models but the parameters are given rather than being 

estimated.12 RiskMetrics suggests modeling the dynamics in the daily asset return covariance 

using a persistence parameter 0.94   (Longerstaey and More, 1995). The response to 

shocks is measured by the remaining  1 0.06   

  1
, , , , , 1 , 1 , , 11

ˆ ˆ1 (1 )s
i j t i t s j t s i t j t i j ts

q e e e e q    
    

      (8) 

The importance of the standardized shocks from both assets , ,i t s j t se e   decreases 

exponentially, thereby emphasizing the information provided by current observations relative 

to past observations. For the analysis in our paper, the EWMA model is useful in two ways. 

                                                 
12  When the parameters are estimated the EWMA becomes the Integrated Dynamic Conditional 

Correlations (IDCC) estimator (Engle 2002).  
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First, the effort of implementing the EWMA estimator is somewhere between a rolling 

window estimator and the more sophisticated MGARCH models. Second, since the 

persistence parameter   and the shock sensitivity 1   sum up to one, the resulting 

correlations are non-stationary, so that shocks can generate permanent level shifts in dynamic 

correlations (Engle, 2002). This feature is important since economic disruptions are reflected 

in many financial time series. Although the EWMA model suffers from similar shortcomings 

as the DCC model, it should in principle be particularly suited for this purpose. 

Our last estimator is the Dynamic Conditional Correlations (DCC) estimator that was 

already presented in section 2.1. Because of the constant in the function of ݍ௜௝,௧ , Engle’s 

(2002) mean-reverting DCC specification can be considered as an extension of the EWMA 

model. For the sake of completeness, we repeat the expression for , ,ˆi j tq  here: 

 1
, , , , , , , 1 , 1 , , 11

1
ˆ ˆ1

1
s

i j t i j i t s j t s i j i t j t i j ts

a b
q a b e e a b ae e bq

b
  

    

 
      

   (9) 

We will now investigate how changes in the correlation parameters govern the dynamics of 

correlation estimators.  

4.2  Anatomy of Conditional Correlation Dynamics 

In this section, we show that the volatile pattern that is typically observed when 

applying conditional correlation measures is to a large extent artificial. We demonstrate that 

correlation dynamics depend on the specification of the correlation model. The impact of the 

model in turn is amplified by the level of the underlying correlation structure. The volatility 

of the estimated dynamic correlation ˆ
t  is highest when the true underlying correlation   is 

zero and diminishes as   approaches 1 . The key finding is that estimated correlations 

contain a fluctuation component that is unrelated to the correlation parameters. In the 

following we will formally demonstrate this effect. We start by considering a DGP that 

produces constant correlations. In terms of tq  as in Equation (8) above we define: 
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  12, 11, 22,t t t tf q q q  tq , where  1,1,tq . Since the true correlation is constant, it 

follows that    1, , 1, 2,12 tt t t tE e e E e e    and the variance and all autocovariances of 

conditional correlations are zero. 

To focus on the correlation effect, we assume that we have a correctly specified model 

for the conditional return volatility, so that the standardized residuals te  are homoscedastic 

and normally distributed: 

 1, 2,

0 1
~ . . . ,

0 1t te e i i d N



    
    
    

. (10) 

In the following, we will simplify the analysis and use the first-order Taylor expansion of 

݂ሺܙෝ௧ሻ  around ܧሺܙ௧ሻ ൌ ߮ ൌ ሺ1,1, ሻߩ  to approximate ݒ݋ܥሺߩො௧, ො௧ି௦ሻߩ . A Monte Carlo 

simulation in Appendix D shows that a reasonable choice of model parameters approximates 

the exact analytical expression for ݒ݋ܥሺߩො௧,  ො௧ି௦ሻ quite well.13 The Taylor series expansion ofߩ

*ˆt  can be expressed as  

∗ො௧ߩ ൌ ݂ሺ߮ሻ ൅ డ௙ሺఝሻ

డ௙ఝᇱ
ሺܙෝ௧ െ ߮ሻ. (11) 

We will therefore approximate ݒ݋ܥሺߩො௧,  ො௧ି௦ሻ byߩ

,∗ො௧ߩሺݒ݋ܥ ∗ො௧ି௦ߩ ሻ ൌ డ௙ሺఝሻ

డ௙ఝᇲ
,ෝ௧ܙሺݒ݋ܥ ෝ௧ି௦ሻܙ

డ௙ሺఝሻ

డ௙ఝ
. (12) 

Proposition 1: Let ሼሺ݁ଵ,௧,݁ଶ,௧ሻ′ሽ be a bivariate i.i.d. process as defined in (10) with |ߩ| ൏ 1 

and ݏ ൒ 0, and define ષ ൌ 2	൮

1 ଶߩ ߩ
ଶߩ 1 ߩ

ߩ ߩ ଵ

ଶ
ሺ1 ൅ ଶሻߩ

൲. 

If ܙෝ௧ follows the definition in (9) then 

(i) ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ ൌ ,஽஼஼ሺܽߛ ܾ, ,஽஼஼ሺܽߛ ሻષ, whereݏ ܾ, ሻݏ ൌ ௕ೞ௔మ

ଵି௕మ
. 

If ܙෝ௧ follows the definition in (8) then 

                                                 
13 For further examples, see Kwan (2008) and the references therein. 
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(ii) ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ ൌ ,ߣாௐெ஺ሺߛ ,ߣாௐெ஺ሺߛ ሻષ, whereݏ ሻݏ ൌ ఒೞሺଵିఒሻమ

ଵିఒమ
. 

If ܙෝ௧ follows the definition in (7) then 

(iii) ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ ൌ ,ோௐሺ݊ߛ ,ோௐሺ݊ߛ ሻષ, whereݏ ሻݏ ൌ ௡ି௦

௡మ
 for ݏ ൏ ݊ and ߛோௐሺ݊, ሻݏ ൌ 0 for 

ݏ ൒ ݊. 

Proposition 1 implies that ݒ݋ܥሺߩො௧∗, ∗ො௧ି௦ߩ ሻ  contains a true unconditional correlation 

component 
డ௙ሺఝሻ

డ௙ఝᇲ
ષ డ௙ሺఝሻ

డ௙ఝ
, and a model-specific multiplier ߛ஽஼஼ ாௐெ஺ߛ , , and ߛோௐ . It is 

important to note that Ω  is unrelated to any model parameters. Fluctuations over time are 

therefore an inherent part of correlation dynamics.  

Proposition 1 allows us to express  * *ˆ ˆ,t t sCov     in a single number. Let ߢሺߩሻ ൌ

ሺ1 െ ଶሻଶ. For the case that ˆtqߩ  follows the DCC model we obtain 

,∗ො௧ߩሺݒ݋ܥ ∗ො௧ି௦ߩ ሻ ൌ ,஽஼஼ሺܽߛ ܾ,  .ሻߩሺߢሻݏ

For the case that ˆtq  follows the EWMA model we obtain 

,∗ො௧ߩሺݒ݋ܥ ∗ො௧ି௦ߩ ሻ ൌ ,ߣாௐெ஺ሺߛ  .ሻߩሺߢሻݏ

Finally, for the case that ˆtq  follows the RW model we obtain 

,∗ො௧ߩሺݒ݋ܥ ∗ො௧ି௦ߩ ሻ ൌ ,ோௐሺ݊ߛ  .ሻߩሺߢሻݏ

For the discussion of correlation dynamics we focus on these expressions of  * *ˆ ˆ,t t sCov    . 

4.3  The Impact on Correlation Dynamics 

We have demonstrated that ݒ݋ܥሺߩො௧∗, ∗ො௧ି௦ߩ ሻ has a model-independent component ߢሺߩሻ 

that is fully determined by the size of the true underlying correlation  , and a model 

multiplier  . In other words, a dynamic correlation estimator ˆ
t  generates spurious 
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dynamics even when the true underlying correlation   is constant.14 With |ߩ| ൏ 1 and ߛ ൐

0, setting the lag s to zero results in the variance of *ˆt :    * * *ˆ ˆ ˆ, 0t t tCov Var    . The 

definition of ߢሺߩሻ ൌ ሺ1 െ  ,ଶሻଶ shows that, as long as returns are not perfectly correlatedߩ

   is always positive and has a global maximum at ߩ ൌ 0 . As a consequence, the 

estimated correlation ˆ
t  contains daily fluctuations even when the true correlation does not. 

In addition, ˆ
t  depends on lagged values when  * *ˆ ˆ,t t sCov     is significantly positive for 

lags 0s  . A high persistence can give the pattern in ˆ
t  a spurious dynamic behavior that 

some researchers have interpreted as cycles (e.g., Cai, Chou, and Li., 2009; Pukthuanthong 

and Roll, 2011).15 

Given the correlation parameters ( a  and b  in the DCC model,   in the EWMA 

model, and n  in the rolling window model) the relationship between the volatility of the 

correlation estimate    *
ˆ ˆ

tVar      and the level of the true underlying 

correlation   is described by an inverse parabolic relationship. A high correlation level such 

as 0.95  generates stable correlation dynamics irrespective of the underlying model 

specification. If the level of correlation decreases from 0.95 to 0.50 the volatility of ˆ
t  

increases by a factor of 6. If the underlying correlation decreases further to 0, the volatility of 

ˆ
t  increases by another 33%. Again, this increase in volatility occurs for all model 

specifications and parameter choices. In empirical applications, the pronounced fluctuations 

                                                 
14 Technically, ˆ

t  will be zero if 0  . We can ignore this situation since this describes the trivial case 

when all parameters driving the correlation dynamics are zero. Note that a positive rolling window multiplier 

requires ݏ ൏ ݊. 
15 We note several similarities between our findings and those on rolling windows and ARMA-type 

processes provided elsewhere (e.g., Lütkepohl, 2006). However, except for some simulation results reported in 

Aielli (2013), we are not aware of any paper considering the autocovariance structure of conditional 

correlations. 
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in correlation dynamics are often interpreted as the result of incoming financial news 

(Christiansen, 2000; Cappiello, Engle, and Sheppard, 2006). A simple and more likely 

explanation is that assets share a low level of correlation. We can test whether this 

relationship can also be found in empirical data. To obtain an estimate of the volatility in the 

correlation measure, ˆˆ , we estimate dynamic correlations ˆ
t  for our 40 assets and take the 

sample standard deviation. We can obtain a measure of  by taking the average over the time 

series of ̂ .16 Panel A of Figure 5 plots ˆˆ  on the y-axis against the level of correlation on 

the x-axis. The solid line shows the theoretical relationship of ˆˆ  as derived in the previous 

section emphasizing that ˆˆ  is an inverse parabolic function of  . For instance, ˆˆ  in the 

DCC model is generated by      22 2 2
ˆˆ 0.03 1 0.96 1DCC
          , where we have 

used typical DCC parameters 0.03DCC a   and 0.96DCC b  . The humped shaped 

relationship is shown in the left graph of Panel A. For comparison, the dashed line with 95% 

confidence bands shows an estimated nonparametric relationship based on the actual data. 

The empirical relationship matches the theoretical one, lending support to the notion that 

dynamic correlations are likely to be more imprecise when the underlying correlation is close 

to zero. The EWMA model in the right graph of Panel A verifies this observation. Although 

we lack data for extreme negative correlations, we find strong evidence that the relationship 

holds for large positive correlations. An increasing variation in the observations around 

0   suggests that the link between ˆˆ  and   is less clear when assets are uncorrelated. 

<< Figure 5 about here >> 

                                                 
16 The presence of correlation breaks is likely to change the model multiplier  . To separate this effect 

from the hump shaped function of the model-independent component ߢሺߩሻ, we base our dynamic correlation 

estimates on subsamples. 
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The theoretical relationship is derived under our assumption that true correlations 

within subsamples are constant. To illustrate how the observed relationship would behave in 

a perfectly constant environment, we simulate daily DCC correlations under the restriction 

that the true underlying errors  1, 2,,t te e   remain unchanged over time. This situation is shown 

in the left graph of Panel B. By construction, the theoretical curve now perfectly fits the point 

cloud. We note some interesting similarities between the humped shaped relationship derived 

under the controlled simulation with the one observed in the actual data. First, the general 

form, with high fluctuations in   when assets are uncorrelated and decreasing volatility as 

  approaches 1 , are clearly visible in the actual financial data. Second, the uncertainty 

concerning ˆˆ  is highest for uncorrelated assets. We interpret these similarities as an 

additional indicator that correlations in financial data are likely to be constant when structural 

breaks in correlations are accounted for.17 

Our findings concerning the volatility in ˆ
t  do not extend to univariate GARCH 

models. We can repeat our analysis based on univariate GARCH volatility ˆt  instead of ˆ
t . 

To collect observations on the level and volatility of ̂ , we apply a volatility breakpoint test 

and measure the average sample volatility ̂  and the volatility of the GARCH volatility ˆˆ

within subsamples. For detecting volatility breaks, we apply the test developed in Inclán and 

Tiao (1994).18 The right graph in Panel B shows that the relationship for ̂  appears linear 

and is strictly positive: higher levels of   are associated with higher fluctuations in ̂ . 

                                                 
17 Of course, some differences are to be expected given that in practice, underlying correlations are not 

perfectly constant and are subject to differences DCC parameters and sample size. 
18 Rapach and Strauss (2008) propose an adjusted Inclán-Tiao test that is more effective in the presence 

of GARCH effects. For our purpose, the adjustment is of minor importance since our primary goal is to collect 

data on the level and volatility of ̂ , and not to detect the correct break point date. 



24 

Hence, our findings concerning the behavior of correlations differ from previous results for 

univariate volatility models (e.g., Rapach and Strauss, 2008).  

The humped shape function described by     is a general result. However, it cannot 

show how breaks in the correlation structure transmit to DCC parameter values and 

ultimately affect the volatility of ̂ . The link between correlation breaks and ˆˆ  is 

established through the model multiplier  : correlation breaks distort correlation parameter 

estimates which in turn directly determine  . In Section 3 we found only small average 

changes in estimates of DCC a  and b . Comparing full samples and subsamples, the average 

DCC b  decreased from 0.970 to 0.836, and the average DCC a  actually increased slightly 

from 0.021 to 0.027. At first glance, none of these changes appear to be particularly large. 

However, we will show in the following that even small parameter changes can have a 

substantial impact on ˆˆ  if they move outside a narrow range. In the extreme case when 

DCC a  or b estimates are close to zero, the generated correlations ˆ
t  are constant. We find 

this to be the case in a number of subsamples. To compare DCC parameter estimates in full 

samples from those obtained in subsamples we proceed in two steps. We first concentrate on 

the full sample and select asset correlations from which typical estimates of DCC a  and b  

values can be obtained. As before, the full samples contain daily data from 01/03/2000 to 

12/31/2014 (3914 obs.). We then take the same assets but re-estimate the DCC  parameters 

over the subsamples where we follow our previous approach and define subsamples to lie on 

both sides of a correlation break point. Panel A in Figure 6 shows pairs of DCC a  and b  

estimates. The full sample estimates in the left graph were selected to be within a range of 

0.01 0.06DCC a   and 0.8 0.99DCC b  . Only parameter combinations that lie within 

this range generate typical dynamic correlation. The range is indicated by a green background 

to highlight that the area of allowed parameters is small relative to the theoretically possible 
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parameter space. The right graph shows the distribution of DCC estimates when re-estimated 

over subsamples. The estimates are based on the same asset pairs that were used in the full 

sample analysis and are therefore directly comparable. We exclude subsamples with less than 

500 observations to remove small sample effects on the parameters. A large fraction of the 

parameter estimates now lie outside the range of typical parameter values. A number of DCC 

b values are smaller than 0.5 and some are even zero.  

<< Figure 6 about here >> 

In Panel B we illustrate how parameter estimates outside the normal range impact the 

correlation dynamics. The left graph shows a generated correlation when DCC a is close to 

zero. As expected, the generated correlations are constant. The right graph shows the 

situation when DCC a takes on a typical value but DCC b is 0.5. The generated correlation is 

quasi constant with small fluctuations around a straight line. We can summarize our findings 

concerning parameter changes as follows: The typical dynamic pattern of ˆ
t  that has become 

a stylized fact for many financial assets requires that both, DCC a  and b  lie within a narrow 

range.19 Parameter values outside this range lead to correlations that lack typical dynamics. 

When estimated over subsamples that do not contain a break, many of the correlations turned 

out to be constant. Our findings suggest that many correlation dynamics are spurious and 

disappear once correlation breaks are controlled for. 

It is instructive to investigate how the dynamics in ˆ
t  respond to the interaction of 

DCC a  and b . We show that this interaction is strongly nonlinear so that seemingly small 

changes in model parameters can have significant effects. In particular, the observed decrease 

in DCC b  from 0.970 in full samples to 0.836 in subsamples has important implications for 

the dynamics of ˆ
t . Panel A of Figure 7 shows the location of full sample and subsample 

                                                 
19 The results also hold in the case of the EWMA model for various  . 



26 

DCC parameters on the  *ˆtVar   surface. The surface shows a distinct upward slope in for 

cases of high DCC a  and b  values. The full samples estimates with 0.021DCC a  , 

0.970DCC b  , and 0.991DCC a DCC b   constitute one such combination that generate 

large fluctuations in  *ˆtVar  . For the full sample, we find  *ˆtVar   to be 0.004. The upward 

slope illustrates the “narrow band” that we mentioned before. On the other hand,  *ˆtVar   

quickly converges towards zero if one DCC parameter decreases just slightly. The location of 

the subsample DCC parameters shows a marginally higher DCC a  value of 0.027 that is 

more than compensated by a significantly lower DCC b  value of 0.836. The sum of both 

DCC parameters is 0.863 and therefore significantly below one. The location on the surface 

indicates that these values produce much less volatile estimate of ˆ
t . In fact, our estimate for 

 *ˆtVar   in subsamples is just 0.001, a quarter of its full sample size. This supports the 

notion that DCC correlations are constant in subsamples. From the findings in Panel A, we 

conclude that due to the nonlinear interaction of DCC parameters, even small deviation can 

have important implications for the variation in ˆ
t . 

Panel B shows how the findings concerning the variance of ˆ
t  also extend to the 

autocovariance and therefore the dynamics of ˆ
t . To highlight the impact of DCC b  on 

various autocovariance lags s, the value for DCC a  is fixed at 0.02. The shape of the 

autocovariance surface shows that ˆ
t  has very short or no memory for most parameter 

combinations. Significant dynamics only emerge for DCC b  values that are large, so that the 

sum of DCC a  and b  are close to one. Again, the average parameter location in full samples 

is sufficiently close to one to produce the distinct dynamics that are typical for correlation 

estimates of many financial time series. In contrast, average subsample DCC parameters 

produce correlations with little serial correlation. The findings in Panels A and B indicate that 
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when controlling for breaks, dynamic conditional correlation estimates show little variations 

and no significant dynamics. The implication is that the nature of correlations is constant. 

 

5  Volatility Ratios 

Like variances, correlations are unobserved and need to be estimated. The absence of a 

true observed correlation complicates model comparison in empirical applications. Engle and 

Colacito (2006) propose a method that allows for an effective comparison of correlation 

models within the portfolio setting. The idea is to use portfolio variance as a measure of the 

effectiveness of a dynamic correlation model where lower variance indicates a better 

correlation model. Consider the standard portfolio optimization problem 

,
,, , , , 0min . .

i t
ii tt i t i t i t

w
s t    w H w w ,  (13) 

where ,i tH  is the conditional covariance matrix of model i at time t,   is the vector of 

portfolio weights and 0 0   is the required target return. Campbell, Lo, and MacKinley 

(1997) show that the solution and therefore the optimal portfolio weights can be estimated by 

   1 1
, , , 0i t i t i t    w H H . The volatility of the portfolio return ,i t tw r  can then be obtained 

as , , , ,ˆi t i t i t i t  w H w . An efficiently estimated dynamic covariance matrix ,i tH  will be 

reflected in a low portfloio volatility ,ˆi t . A comparison of covariance matrix estimators 

based on this approach has been applied for instance in DeMiguel, Garlappi, and Uppal 

(2009) but was entirely based on constant moments. 

To compare portfolio volatilites Engle and Colacito (2006) form volatility ratios ,i tVR . 

In the ideal case where the true covariance matrix tΩ  is known the volatility ratio would be  

,, , ,

, * *
,

ii tt i t i t

i t

t i t t

VR



w H w

w Ω w
, (14) 
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By construction, the volatility ratio in Equation (14) is larger than one and indicates the 

excess portfolio volatility that is based on the estimate ,i tH  rather than the true correlation 

matrix tΩ . The extent to which ,i tVR  exceeds one indicates the inefficiency of the dynamic 

covariance estimator. Since true correlations are unobservable in practice, Engle and Colacito 

(2006) consider a version of ,i tVR  that is based on the different model specifications for ,i tH : 


 

,
,

1, ,

ˆ

ˆ ˆmin , ,
i t

i t

t n t

VR

 




, (15) 

We follow this approach and consider the 3n   correlation models DCC, RW and 

EWMA. To evaluate the performance of our three models in terms of portfolio variance we 

use the same 40 asset data set that was employed in previous sections. Our focus is on the 

model performance in samples that contain breaks and more stable situations that do not 

contain any breaks. One potential issue is the different sample size that can influence 

estimation results. For instance, a larger non-break sample could appear to produce smaller 

portfolio volatilities because the large number of observations leads to more precise model 

parameters. To circumvent this problem we select break and non-break samples of equal size. 

To illustrate this a bit further, Panel A of Figure 8 shows the sample selection process for the 

correlation between the stock indices of Italy (MIB) and the Netherlands (AEX). For this 

sample, we detect a correlation break point at observation 198, another at observation 430, 

and a third at observation 2,814. The third observation is a suitable break partition and we 

select a 1,000 observation window from observation 2,314 to 3,314 with the breakpoint in the 

center of that window. The data prior to the break window contain sufficient observation to 

select another 1,000 non-break observation window for comparison. We analyze all other 

asset pairs in this way and collect 429 break and non-break partitions of size 1,000.  

<< Figure 8 about here >> 



29 

The portfolio variance is not only a function of the estimated covariance matrix but also 

depends on the expected return vector   that enters the optimization as an input. Although 

the variance does not appear to respond very strongly to this assumption, we follow Engle 

and Colacito (2006) and compute volatility ratios over a range of expected returns. Panel B of 

Figure 8 shows the percentage of cases in which the smallest portfolio variance is generated 

by the DCC model and hence has a volatility ratio of one. Among the three correlation 

models, the DCC model performs well in situations that do not contain a structural break 

producing the lowest portfolio variance in 60% to 80% of all cases. In samples that contain a 

correlation break, the DCC parameters are biased and the portfolio performance decreases. 

Still, the overall performance of the DCC is quite remarkable compared to its competitors. 

However, the break samples that form the basis for the results in Panel B only test for the 

presence of a statistically significant break whereas the DCC parameters are likely to respond 

also to the size of the break. In Panel C we look at model performance conditioning on the 

size of the break indicated on the x-axis of the graph. For economically small correlation 

breaks up 0.4 the DCC model produces lower portfolio variances than the rolling window or 

the EWMA model. However, the performance of the DCC model deteriorates quickly as the 

break size increases. For instance, for small breaks of less than 0.1, DCC is the best model in 

65% of all cases. For larger breaks between 0.4 and 0.5, the DCC is the best choice in 33% of 

all cases. For large correlation breaks of more than 0.5, the distorting effect on the DCC 

correlation is so strong that the simple rolling window estimator leads to better portfolio 

performance. Multivariate GARCH models like DCC are often praised for their dynamic 

flexibility to accommodate changes in the return pattern. Our results indicate that in the 

presence of correlation breaks a rolling window estimator may perform better despite its 

simplicity. 
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6  Conclusion 

In this paper, we provide empirical evidence that daily correlation dynamics among 

financial assets are spurious. The typical correlation dynamics that can be observed in the 

data are a direct consequence of correlation breaks that occur in response to financial and 

economic shocks. The presence of breaks affects the correlation parameters DCC a and b. 

DCC a, which measures the response to shocks, and the parameter DCC b, which measures 

the persistence of correlations, interact in a nonlinear way to generate the correlation 

dynamics that we usually observe for financial assets. Once these breaks are controlled for, 

the parameters driving the correlation dynamics change in important ways. A number of 

parameters are now close to zero and generate constant correlations. The average estimate of 

DCC b which is upward biased in the presence of correlation breaks decreases in subsamples. 

The sum of a and b which is usually found to be close to one is therefore lower. These subtle 

changes remove the parameters from an area of influence that generate typical correlation 

dynamics. The variance and autocovariance estimates are now lower, indicating that 

correlation estimates fluctuate at low volatility around a straight line. The true nature of 

correlations is therefore likely to be constant. The implication for empirical correlation 

estimates is that the path generated by multivariate GARCH correlations should be 

interpreted with caution. A portfolio spanning the main asset classes is shown to respond to 

the way correlations are estimated. A significant break in the correlation structure can distort 

DCC correlations and lead to a higher portfolio variance. We show that investors can resort to 

simple solutions such as a rolling window estimator when updating their portfolio weights.  

In summary, our results provide a rationale for the often controversial discussion of the 

value added of dynamic conditional correlation models. A number of dynamic correlation 

models have formed the basis for a significant amount of important research and we do not 
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propose to reject these models entirely. However, academics and practitioner should be aware 

of the practical limitations of these models that arise in many finance applications. 
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Appendix A: Empirical Results for Other Popular MGARCH Models 

In this paper we focus on Engle’s DCC model which appears to be the most popular 

and most widely used MGARCH model in empirical research. In the following, we will show 

that our findings are not confined to the DCC specification but also extend to other more 

complex MGARCH models. In particular, we find that correlation breaks have similar 

implications for the coefficient estimates of the diagonal VECH model (Bollerslev, Engle, 

and Wooldridge, 1988), the BEKK model (Engle and Kroner, 1995), and the corrected DCC 

model (Aielli, 2013). While differences in model specifications prevent a direct comparison 

between models, we can observe a distinct change in coefficient estimates across all models. 

The diagonal VECH model of Bollerslev, Engle, and Wooldridge (1988) is a restricted 

version of the more general VECH model and is expressed as 

1 1 1t t t tH A B H       , (A.1) 

where the parameter matrices A and B are indefinite matrices, i.e. the parameters can 

vary without any restrictions. While this specification does not ensure that the conditional 

covariance matrix is positive semidefinite, it is also the most general way of writing the 

diagonal VECH model.  

The diagonal BEKK model of Engle and Kroner (1995) is defined as 

1 1 1t t t tH A A BH B          . (A.2) 

The general form of the BEKK model in which A and B are unrestricted contains many 

parameters and is computationally expensive. We therefore use the more common diagonal 

form in which A and B are restricted to be diagonal matrices. 

Aielli (2013) shows that the constant ,i j  in  , , , , 1 , 1 , , 1ˆ ˆ1i j t i j i t j t i j tq a b ae e bq         

can be inconsistent. The constant ,i j  is thought of as the second moment of te  or 

 t tE e e  . For certain parameter values and large systems containing many assets, this may 
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not be the case which can cause the DCC estimator to be biased. However, Aielli also shows 

that for parameter values that are common for financial applications the bias is negligible. 

The correction proposed by Aielli (2013) is  

 , , , , , , 1 , 1 , , 1ˆ ˆ ˆ1i j t i j i j t i t j t i j tq a b a q e e bq          . (A.3) 

We estimate the three models for all assets in our data set. The dynamic correlations 

produced by the models are very similar. For instance, Figure A1 shows the daily dynamic 

correlations between the S&P 500 and the NASDAQ composite index. The upper graph is 

based on the DCC model and is the same as Figure 1 shown in the introduction. The lower 

graph shows the deviations of the DCC model from the corrected DCC (cDCC), the diagonal 

VECH, and the diagonal BEKK model. As can be seen, the differences are quite small, so 

that we should expect the findings in this paper to hold also for other autoregressive 

MGARCH specifications. 
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Figure A1: Model Comparison: Daily Conditional Correlations Between S&P 500 and 
NASDAQ  

DCC Correlations 

Deviations from DCC Model 

This figure shows typical correlation dynamics generated by a DCC model as well as the deviations from these 

DCC correlations. The deviations of other popular correlation models are quite small indicating that the results in 

this paper also extend to other frequently used multivariate GARCH models. 
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Table A1 repeats the correlation coefficient analysis discussed earlier in Panel A of 

Figure 4, this time comparing coefficients across different MGARCH models. The first 

column shows how DCC a and DCC b parameters change from full samples that contain at 

least one correlation break to subsamples that occur between breaks. While the ARCH term 

(in this case the DCC a parameter) increases slightly, the GARCH term (in this case the DCC 

b parameter) decreases by 0.134 to 0.836. As we have shown in the paper, this fall is 

sufficiently large to eliminate most of the variation in ˆ
t . Columns 2 to 4 show a similar 

decrease in the persistence parameter for the other three models. The reduction is not as large 

as in the case of the DCC model but it moves the sum of ARCH and GARCH term away 

from the 0.99 threshold at which correlation dynamics become very pronounced (Aielli, 

2013). From the findings in Table A1 we conclude that typical autoregressive MGARCH 

specifications respond in a similar way to correlations breaks so that our results based on the 

DCC model can be also extended to other MGARCH specifications. 

 

Table A1: The Impact of Correlation Breaks across Different MGARCH Models 

 DCC Corrected DCC VECH BEKK 

  Full Sample   

ARCH term 0.021 0.021 0.025 0.049 

GARCH term 0.970 0.970 0.941 0.939 

  Subsample   

ARCH term 
0.027 

(+0.006) 
0.025 

(+0.004) 
0.026 

(+0.001) 
0.045 

(-0.004) 

GARCH term 
0.836 

(-0.134) 
0.892 

(-0.078) 
0.894 

(-0.047) 
0.909 
(-0.03) 

This Table shows that the presence of correlation breaks affects the persistence parameter and hence the overall 

correlation dynamics of four popular MGARCH models in a similar way. 
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Appendix B: The Scalar D̂  for the Test Statistic of Wied, Krämer and Dehling (2012) 

We briefly describe the construction of the scalar D̂  which is part of the expression in 

Equation (3). For a general and in-depth treatment we refer to Wied, Krämer, and Dehling 

(2012, Appendix A.1). Let  1, 2,( , ) 't tx x  be the bivariate time-series with 1, 2,( , ) ' 0t tE x x    . 

Given is a sample of size T. For 2,1i , denote  


T

t tii xTx
1 ,

1 ,  


T

t tii xTx
1

2
,

12  and 

22ˆ iix xx
i

 . Further, denote  


T

t tt xxTxx
1 ,2,1

1
21  and 

21
ˆ xx 2121 xxxx  . Let )(k  

be the Bartlett kernel function. The scalar D̂  is then given by 

'ˆ'ˆˆˆˆˆ
32123 DDDDDD  , (B.1) 

where 
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ˆ  (B.2) 

with  1/2 2 2 2 2
1, 1 2, 2 1, 1 2, 2 1, 2, 1 2, , , , ,t t t t t t tV T x x x x x x x x x x x x
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and 











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xxD
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

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. (B.4) 

The purpose of the scalar D̂  is to appropriately rescale the cumulated sum of empirical 

correlation coefficients in such a way that convergence of TQ  to the asymptotic null 

distribution is achieved. 
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Appendix C: List of Assets 

Stocks Bonds 

Name DS Mnemonic Name DS Mnemonic 
S&P500 

TSX 
MIB 

OMX Stockholm 
DAX 30 
CAC 40 

AEX 
NIKKEI 225 

KOSPI 
FTSE100 

S&PCOMP 
TTOCOMP

 

FTSEMIB 
SWEDOMX 
DAXINDZ

 

FRCAC40
 

AMSTEOE 
JAPDOWA

 

KORCOMP
 

FTSE100
 

US 10 yr. Gov. 
CA 10 yr. Gov. 
IT 10 yr. Gov. 
SE 10 yr. Gov. 

GER 10 yr. Gov. 
FR 10 yr. Gov. 
NL 10 yr. Gov. 
JP 10 yr. Gov. 

UK 10 yr. Gov. 
CH 10 yr. Gov. 

BMUS10Y 
BMCN10Y 

 

BMIT10Y 
BMSD10Y 

 

ABDGVG4 
 

BMFR10Y 
 

BMNL10Y 
 

BMJP10Y 
 

BMUK10Y 
 

BMSW10Y 
  

Commodities Currencies 

Name DS Mnemonic Name DS Mnemonic 
Copper 
Corn 

Crude Oil 
Heating Oil 
Natural Gas 

Gold 
Aluminum 

Sugar 
Cotton 
Cattle 

GSICTOT 
GSCNTOT 
SGCRTOT

 

GSHOTOT
 

GSNGTOT 
GSGCTOT 
GSIATOT 
GSSBTOT

 

GSCTTOT 
GSLCTOT

 

USD–EUR 
USD–JPY 
USD–CAD 
USD–KRW 
USD–SEK 
USD–CHF 
USD–MXN 
USD–GBP 
USD–NOK 
USD–BRL 

USEURSP 
JAPYNUS 
CDNDLUS 
SKORWUS 

 

SWEDKUS 
SWISFUS 

MEXPFUS 
 

BRITPUS 
 

NORGKUS 
 

BRAZLUS 
 

This table lists the 40 assets that are used in the paper. All time series are from DataStream. The commodities are 

S&P GSCI Total Return Indices. 
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Appendix D: Approximation Accuracy of ࢜࢕࡯ሺ࣋ෝ࢚∗, ∗࢙ି࢚ෝ࣋ ሻ 

To assess whether ݒ݋ܥሺߩො௧∗, ∗ො௧ି௦ߩ ሻ  is a good approximation for ݒ݋ܥሺߩො௧, ො௧ି௦ሻߩ , we 

simulate a series of 500,000 innovations following the DGP as defined in Equation (10). We 

can then generate a series of conditional correlations ߩො௧ from the simulated sample according 

to Equation (1), where ܙෝ௧ is defined by a rolling window estimator as in Equation (7), an 

EWMA model as in (8), or by the DCC specification of Equation (9). We can measure for 

approximation accuracy by using the percentage deviation of the approximation 

,∗ො௧ߩሺݒ݋ܥ ∗ො௧ି௦ߩ ሻ from the sample value of ݒ݋ܥሺߩො௧,  .ො௧ି௦ሻߩ

The parameter of the WMA model is set to ߣ ൌ 0.94, which is the daily parameter 

value proposed by RiskMetrics. The choice of the DCC model parameters is based on the 

estimated values derived from Engle and Sheppard (2001), Engle (2002), and Engle and 

Colacito (2006). Table D1 gives an overview of the ML estimates reported in these studies. 

The parameter ܽ ranges from 0.01 and 0.07, ܾ ranges from 0.91 to 0.98, and on average 1 െ

ܽ െ ܾ is about 0.01. We therefore set ܽ equal to 0.02, 0.04, or 0.06, while ܾ is defined as 

0.99 െ ܽ. Finally, the window size ݊ of the rolling window estimator is set to 60, 120, and 

240. 

The simulation results are shown in D.1. For the EWMA model, ݒ݋ܥሺߩො௧∗, ∗ො௧ି௦ߩ ሻ tends to 

overstate ݒ݋ܥሺߩො௧, ߩ ො௧ି௦ሻ forߩ ൌ 0.0 and 0.3, and understate it for ߩ ൌ 0.6 and 0.9. For the 

DCC model, ݒ݋ܥሺߩො௧∗, ∗ො௧ି௦ߩ ሻ tends to overstate ݒ݋ܥሺߩො௧,  ො௧ି௦ሻ, while the opposite appears to beߩ

true for the rolling window. Overall, the deviations range from -10.26% to 5.96%. 
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Table D1: Simulated Values ݒ݋ܥሺߩො௧, ,∗ො௧ߩሺݒ݋ܥ ො௧ି௦ሻ versus the Approximationߩ ∗ො௧ି௦ߩ ሻ 

ρ 
EWMA DCC with ࢈ ൌ ૙. ૢૢ െ  Rolling Window ࢇ

ߣ ൌ 0.94 ܽ ൌ 0.02 ܽ ൌ 0.04 ܽ ൌ 0.06 ݊ ൌ 60 ݊ ൌ 120 ݊ ൌ 240 

Panel A: lag s = 0: ሺݒ݋ܥሺߩො௧∗, ,ො௧ߩሺݒ݋ܥ/	ො௧∗ሻߩ ො௧ሻߩ െ 1ሻ ∙ 100 

0.0 4.9943 1.4060 5.5689 5.9551 -1.1186 -0.2574 -1.2697 

0.3 1.5494 1.4909 3.7652 3.8787 -2.6126 -0.5663 -0.5497 

0.6 -1.3444 0.8873 0.5631 0.2382 -5.1407 -1.8598 -1.9055 

0.9 -10.2614 0.0674 -2.4617 -6.0443 -9.1979 -5.4237 -0.6458 

Panel B: lag s = 5: ሺݒ݋ܥሺߩො௧∗, ො௧ିହߩ
∗ ሻ	/ݒ݋ܥሺߩො௧, ො௧ିହሻߩ െ 1ሻ ∙ 100 

0.0 4.2139 0.9175 5.0035 4.4564 -0.7880 -0.1607 -1.2761 

0.3 0.1484 1.1537 3.0081 2.0319 -2.3207 -0.4636 -0.5311 

0.6 -2.0026 0.6319 0.1008 -0.8287 -4.8108 -1.7221 -1.8935 

0.9 -10.1639 0.2974 -2.3910 -6.0815 -8.6375 -5.3226 -0.5925 

Panel C: lag s = 10: ሺݒ݋ܥሺߩො௧∗, ො௧ିଵ଴ߩ
∗ ሻ ,ො௧ߩሺݒ݋ܥ/ ො௧ିଵ଴ሻߩ െ 1ሻ ∙ 100 

0.0 4.0909 0.4415 4.5275 3.7571 -0.4778 -0.0782 -1.2807 

0.3 -0.9402 0.9954 2.3103 0.1669 -2.0155 -0.3886 -0.5222 

0.6 -2.6713 0.3867 -0.0721 -1.6956 -4.5631 -1.5754 -1.8715 

0.9 -10.1972 0.1999 -2.5478 -6.4674 -8.0247 -5.2235 -0.5493 

This table shows the percentage deviation of the ࢜࢕࡯ሺ࣋ෝ࢚∗, ∗࢙ି࢚ෝ࣋ ሻ  approximation from the sample value 

,࢚ෝ࣋ሺ࢜࢕࡯  .ሻ, with values for s changing from 0 in Panel A to 5 in Panel B, and finally 10 in Panel C࢙ି࢚ෝ࣋

,࢚ෝ࣋ሺ࢜࢕࡯  ሻ is estimated from conditional correlations generated by applying an EWMA model, a DCC࢙ି࢚ෝ࣋

model, and a rolling window estimator to a series of simulated innovations as defined in (10). The true 

underlying correlation ρ changes over typical values: 0, 0.3, 0.6, and 0.9. 
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Appendix E. Proof of Proposition 1 

We begin with the expressions  ˆ ˆ,t t sq q  for the DCC and the EWMA model (labeled i 

and ii in Proposition 1). First, let ܏௧ ൌ ൫݁ଵ,௧
ଶ ݁ଶ,௧

ଶ ݁ଵ,௧݁ଶ,௧൯′ so that Eሺ܏௧ሻ ൌ ૎ ൌ ሺ1, 1,  ′ሻߩ

and 

  1 1
ˆ ˆ1t t ta b a b     q φ g q , (E.1) 

with 0 ൏ ܽ ൏ 1, 0 ൏ ܾ ൏ 1 and ܽ ൅ ܾ ൏ 1. Defining ܝ௧ ൌ ܽሺ܏௧ିଵ െ ૎ሻ such that Eሺܝ௧ሻ ൌ 0 

and ۰ ൌ ܾ۷	, we can rewrite (E.1) as a VAR(1) process: 

࢚ෝܙ ൌ ሺ1 െ ܾሻ૎ ൅ ૚ି࢚ෝܙ۰ ൅  ,௧ܝ

ൌ ሺ1 െ ܾሻ૎ lim
୧→ஶ

൫۷ ൅ ۰ ൅⋯൅ ۰୧൯ ൅ ∑ ௧ି௦ܝܛ۰
ஶ
ୀ૙ܛ , (E.2) 

ൌ ૎൅ ∑ ௧ି௦ܝܛ۰
ஶ
ୀ૙ܛ , 

where we use the fact that lim
୧→ஶ

൫۷ ൅ ۰ ൅⋯൅ ۰୧൯ ൌ ଵ

ଵିୠ
۷. Equation (E.2) is stationary if all 

eigenvalues of ۰ are less than 1 in absolute values, which is satisfied here as we assume 0 ൏

ܾ ൏ 1 (this is a common assumption, see e.g. Lütkepohl, 2006). Because ܙෝ࢚  is stationary, 

௧ି௦ሻ′ܝ௧ܝሺܧ ൌ ૙ and ܧሺܝ௧ܝ′௧ሻ ൌ ઱ܝ for all t. Also, uΣ  is invertible for 1  . It follows that 

,ෝ௧ܙሺݒ݋ܥ ෝ௧ି௦ሻܙ ൌ ∑ ′ሺ۰ܑሻܝାܑ઱ܛ۰
ஶ
ܑୀ૙ . (E.3) 

Hence, all that is needed to get ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ  is ܧሺܝ௧ܝ′௧ሻ . Denoting ૎૎ᇱ ൌ ઩  and 

௧ሻ′܏௧܏ሺܧ ൌ ડ, we can write ઱ܝ ൌ ܽଶሺડ െ ઩ሻ and therefore 

,ෝ௧ܙሺݒ݋ܥ ෝ௧ି௦ሻܙ ൌ ∑ ାܑܽଶሺડܛ۰ െ ઩ሻሺ۰ܑሻ′ஶ
୧ୀ଴ ൌ ܽଶሺડ െ ઩ሻ ௕ೞ

ଵି௕మ
. (E.4) 

Because ષ ൌ ડ െ ઩, Equation (E.4) implies the DCC case (i) for   1a b   and the EWMA 

case (ii) for 0 ൏ ߣ ൌ ܾ ൌ ሺ1 െ ܽሻ ൏ 1. 

Next, we turn to the expression  ˆ ˆ,t t sq q for the rolling window estimator (labeled iii in 

Proposition 1). Let again ܏௧ ൌ ൫݁ଵ,௧
ଶ ݁ଶ,௧

ଶ ݁ଵ,௧݁ଶ,௧൯′, Eሺ܏௧ሻ ൌ ૎ ൌ ሺ1, 1, ሻ′, ૎૎ᇱߩ ൌ ઩ and 

௧ሻ′܏௧܏ሺܧ ൌ ડ. Because ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ ൌ ෝ′௧ି௦ሻܙෝ௧ܙሺܧ െ ઩ we have to derive ܧሺܙෝ௧ܙෝ′௧ି௦ሻ for 
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all ݏ ൒ 0. For the rolling window estimator, we rewrite ˆ
tq  as ܙෝ௧ ൌ

ଵ

௡
∑ ௧ି௟܏
௡
௟ୀଵ . First, let ݏ ൌ

0. In this case  

ෝ′௧ሻܙෝ௧ܙሺܧ ൌ
ଵ

௡మ
∑ ∑ ᇱ௧ି௞൯܏௧ି௟܏൫ܧ

୬
୪ୀଵ

୬
୩ୀଵ , 

ൌ ଵ

௡మ
ሺ݊ડ ൅ nሺn െ 1ሻ઩ሻ, (E.5) 

ൌ
݊
݊ଶ
ሺડ െ ઩ሻ ൅ ઩. 

Next consider	0 ൏ ݏ ൌ ݊ . Note that we can write ܙෝ௧ି௦ ൌ ෝ௧ିሺ௦ିଵሻܙ െ
ଵ

௡
൫܏௧ି௦܏ᇱ௧ି௦ି௡൯ such 

that 

ෝ′௧ି௦ሻܙෝ௧ܙሺܧ ൌ ෝ′௧ିሺ௦ିଵሻ൯ܙෝ௧ܙ൫ܧ െ
ଵ

௡
ቀܧ൫ܙෝ௧܏ᇱ௧ି௦൯ െ  ,ᇱ௧ି௦ି௡൯ቁ܏ෝ௧ܙ൫ܧ

ൌ ෝ′௧ିሺ௦ିଵሻ൯ܙෝ௧ܙ൫ܧ െ
ଵ

௡
ቀଵ
௡
ડ ൅ ୬ିଵ

୬
઩ െ ઩ቁ, (E.6) 

ൌ ෝ′௧ିሺ௦ିଵሻ൯ܙෝ௧ܙ൫ܧ െ
ଵ

௡మ
ሺડ െ ઩ሻ. 

Substituting 
୬ିሺୱିଵሻ

୬మ
ሺડ െ ઩ሻ ൅ ઩ for ܧ൫ܙෝ௧ܙෝ′௧ିሺ௦ିଵሻ൯  in (E.6) yields ܧሺܙෝ௧ܙෝ′௧ି௦ሻ െ

௡ି௦

௡మ
ሺડ െ ઩ሻ ൅ ઩ . Recalling ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ ൌ ෝ′௧ି௦ሻܙෝ௧ܙሺܧ െ ઩  and  ષ ൌ ડ െ ઩ , (E.5) and 

(E.6) thus imply ݒ݋ܥሺܙෝ௧, ෝ௧ି௦ሻܙ ൌ
୬ିୱ

୬మ
ષ  for 0 ൑ ݏ ൏ ݊ . Obviously, for all ݏ ൒ ݊  we have 

ෝ′௧ି௦ሻܙෝ௧ܙሺܧ ൌ ઩ so ݒ݋ܥሺܙෝ௧,  .ෝ௧ି௦ሻ is the null matrix. Hence, the proof is completeܙ
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Figure 1: Daily Conditional Correlations between S&P 500 and NASDAQ Returns 

 

This figure shows daily DCC correlations between the S&P500 Composite index and the NASDAQ Composite index from 01/01/1990 to 12/31/2014 (6,532 obs.). The figure 

shows that the fluctuations in time-varying correlations is generally high and can change substantially over time. During the period from January 1990 to March 2000 the 

volatility of daily correlations was 0.077 (122% on an annualized basis) but decreased in the following period (March 2000 to December 2014) to 0.042 (66% annualized). 

 

0
.6

0
.7

0
.8

0
.9

̂

1/1/1990 4/1/1996 7/2/2002 10/1/2008 12/31/2014

Large Fluctuations in ̂ :
̂̂ = 0.077

Small Fluctuations in ̂ :
̂̂ = 0.042



46 

Figure 2: Are Daily Conditional Correlations between S&P 500 and NASDAQ Returns Constant? 

 

This figure shows the decomposition of daily dynamic correlations into constant correlations that are separated by level shifts. The level shifts are detected by the correlation 

breakpoint test proposed by Wied, Krämer, and Dehling (2012). The identified breaks are associated with significant disruptions in financial markets such as the burst of the Dot-

com bubble in March 2000 or the failure of Lehman Brothers in September 2008. 
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Figure 3: Correlation Breaks: Descriptive Statistics 

Panel A: Distribution of Correlation Breaks Over Time 

Panel B: Number of Correlation Breaks (2000 – 2014) 
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Panel C: Change in Average Correlation ̂  Following a Break 

This figure shows the distribution of correlation breaks over time (Panel A), the frequency of breaks (Panel B), and the 

average change in correlations following a break (Panel C). Breaks are estimated over 40 assets including stocks, bonds, 

commodities, and currencies for a total of  40 39 2 780   correlation pairs. The WKD test detects 775 breaks in daily 

correlations over the period 2000 to 2014.  
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Figure 4: DCC Parameters in Full Samples and Subsamples 

Panel A: Descriptive Statistics of DCC Parameters  

 Mean SD Min Max Significant 

Full Sample 

DCC a 0.021 0.010 0.010 0.059 91% 

DCC b 0.970 0.018 0.847 0.988 100% 

Subsample 

DCC a 0.027 0.023 0.000 0.244 58% 

DCC b 0.836 0.276 0.000 0.997 87% 

Panel B: Distribution of DCC Parameters across Assets 

This figure compares the behavior of DCC parameters in full samples and subsamples. The full sample consists 

of correlations that experience at least one break from 2000 to 2014 (74% of our sample) and have DCC 

parameters within typical ranges: 0.01 0.06a   and 0.8 0.99b  (62% of our sample or 355 correlation series). 

The parameters in both samples are based on the same asset pairs to allow a direct comparison. 
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Figure 5: The Parabolic Relationship Between the Level and Volatility of Dynamic Correlations 

Panel A: Variation in ̂  as a Function of the Underlying  : Theory and Empirical Evidence 

DCC Model EWMA Model 
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Panel B: Simulated Relationship and the Connection to Volatility: A Comparison 

Simulated Relationship with Constant Correlations Linear Relationship for Volatilities 

  

This figure shows how typical estimators of dynamic correlations, ̂ , are influenced by the levels of the true but unobserved correlation  . Panel A compares the 

theoretical behavior, indicated by the inverse parabolic relationship (solid line) with the actual behavior found in the data (dashed line). The theoretical relationship for 

the DCC model is based on 0.03DCC a  and 0.96DCC b  . The theoretical relationship for the EWMA model is based on 0.94   and 1 0.06  . The data 

consists of various correlation pairs from common indices representing stocks, bonds, commodities, and currencies. The points in the left graph show the means and 

standard deviations of 404 DCC correlations from this group of assets. The right graph shows the estimates of the EWMA correlations and consists of 1,613 

observations. The lower number of observations for the DCC model results from excluding correlations with DCC a  estimates of less than 0.02 and DCC b  estimates 

of less than 0.8. Panel B gives an example of the relationship in a controlled simulated environment and shows the case for univariate volatility models. The left graph 

shows the simulated relationship between variation and level of   when the true underlying   is constant over time. The right graph shows that the pronounced 

relationship between the level and volatility of   is unique to dynamic correlation models and does not extend to univariate GARCH models. 
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Figure 6: Estimates of DCC a and b are Different in Subsamples 

Panel A: DCC a  and b  Estimates in Full Samples and Subsamples 

Full Sample Subsample 

Panel B: Examples: The Impact of Low DCC Parameter Values on Correlation Dynamics 

Impact of low DCC a  Impact of low DCC b  

This figure shows the distribution of DCC a  and b  parameters in full samples and subsamples. When parameter 

estimates move outside a narrow range they generate correlations that show little variation over time. For instance, a low 

DCC a  value generates near constant correlations. A low DCC b  value generates correlations that fluctuate at low 

volatility around a constant value. 
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Figure 7: The Nonlinear Impact of DCC Parameters on  ˆVar   

Panel A: Subsample DCC Estimates Imply Lower Fluctuations in ̂  

 

Panel B: Subsample DCC b Values Imply Lower Persistance in ̂  

This figure shows that DCC a  and b values need to lie within a narrow area in order to produce 

meaningful dynamics in ̂ . The parameter estimates found in subsamples are not sufficiently large 

to have either significant fluctuations or noticeable autocovariance. 
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Figure 8: DCC Model Performance in the Asset Portfolios 

Panel A: Procedure for Generating Equally Sized Sample Windows 

Panel B: Number of Cases When DCC generates the Lowest Portfolio Variance 

Expected Returns Break Non-Break 

[0;1] 62.5% 80.0% 

[0.31;0.95] 52.0% 61.3% 

[0.59;0.81] 55.5% 60.4% 

[0.81;0.59] 61.1% 61.1% 

[0.95;0.31] 59.7% 69.2% 

[1;0] 60.4% 73.9% 

Panel C: DCC Performance Deteriorates for Large Correlation Breaks 

 

This figure shows the relative performance of asset portfolios based on different dynamic covariance matrix estimators. 

Panel A shows how break and non-breaks samples with equal size are selected. Panel B shows that the DCC model 

performs less well in samples containing a correlation break. Panel C shows that when correlation breaks are large, a 

simple rolling window estimator is the best choice. 
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