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Abstract

This paper investigates the impact of investor information on financial in-

novation. We identify specific channels through which issuers of financially

engineered products exploit retail investors by using their privileged access

to information. Our results imply that imperfect investor information re-

garding volatility and dividends is crucial to explain the pricing and design

of financially engineered products. We confirm our conjecture by exploiting

a discontinuity in issuers’ informational advantage. The insights are of sys-

temic importance because they suggest that product issuers’ behavior in the

financial innovation market aggravates investor information problems of the

financial system.
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1 Introduction

Financial innovations offer tax, liquidity, or other benefits to investors. The dark side

is that issuers exploit investors by overpricing these products. Potential reasons behind

the dark side are investors’ bounded rationality, limited financial literacy, informational

disadvantage, or product complexity (Célérier and Vallée, forthcoming; Henderson and

Pearson, 2011). The information friction has attracted attention since the 2007–2008

credit crisis because imperfect information in financial innovations can cause trading col-

lapse or market disruptions (Gennaioli, Shleifer, and Vishny, 2012; Hanson and Sunderam,

2013). To mitigate investor exploitation and strengthen financial system resilience it is,

therefore, important to understand the role of this friction. Yet, the channels through

which imperfect investor information emerges in financial innovations are unclear because

information sets of investors and product issuers are usually not observable.

In this paper, we investigate the impact of imperfect investor information on the pric-

ing and design of structured products. We overcome the observability challenge through

our access to a large database containing information provided to structured product

investors. Our analysis provides two primary results. First, issuers exploit their infor-

mational advantage over investors to push overpriced securities to retail investors. We

identify specific information channels of this exploitation, namely volatility and dividends.

In sharp contrast to standard proxies for the production cost of structured products, mar-

ket environment, and liquidity which are mostly insignificant, both information channels

are economically important determinants of issue pricing. Second, issuers design products

to augment their informational advantage. The design result is of systemic importance

because it underpins the concern that financial engineering aggravates the imperfect in-

vestor information friction in financial markets.

Structured products represent an ideal laboratory to explore the role of imperfect

information because they are frequently issued to retail investors with inferior information

than financial intermediaries (Bhattacharya, Hackethal, Kaesler, Loos, and Meyer, 2012).

In addition, their flexibility in terms of payoff design allows us to analyze the impact of

issuers’ informational advantage on product structures.

We have access to a large database containing term sheets of all structured products on

single stock underlyings issued in Switzerland. Issuers are obliged to disclose important

product information to investors in term sheets. Comparing term sheet information

available to investors to the (costly) financial information available to product issuers
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from EUREX and IBES allows us to measure the informational gap between issuers and

investors. From the term sheets, we also calculate the difference between product issue

prices to retail investors and replication prices for identical payout profiles to institutional

investors. We label this difference issue premium (IP). It measures the premium at which

issuers sell products to retail investors. Analyzing price differences helps us to isolate the

impact of the informational gap. Any unobserved price determinant that is correlated

with our informational proxies should affect both prices, but not their difference.

We first examine product issuers’ exploitation of their volatility information advan-

tage. Whereas issuers have access to implied volatility estimates of a product’s underly-

ing, term sheets do not disclose this information. Instead, retail investors tend to rely on

historical price discovery (Daniel, Hirshleifer, and Teoh, 2002; Sirri and Tufano, 1998),

which is commonly provided in term sheets. We find that issuers earn a 30% larger IP

with products that have a higher implied than historical volatility. As replication prices in

our sample decline with implied volatility, this relation suggests that issuers earn higher

premiums when investors overvalue a product based on their historical information. We

present a battery of refinements to confirm that issuers exploit their volatility informa-

tion advantage. First, the effect is stronger for products that are more value sensitive to

volatility information and have a higher portion of retail investors. Second, products with

higher implied than historical volatility tend to have a relatively small implied volatility.

Thus, the result is not simply a consequence of investors’ being unable to recognize that

higher implied volatility should reduces product prices (Henderson and Pearson, 2011).

Third, issuers also select underlying stocks with a larger implied relative to historical

volatility when designing their products.

We then analyze issuers’ dividend information exploitation. Product values in our

sample decline with expected dividends because investors are long in the underlying

stock and do not obtain dividends that accrue up to maturity. Whereas issuers have

access to dividend estimates, term sheets do not disclose this information. The dividend

results mirror our conjecture from the volatility analysis. Issuers earn an over 40% larger

premium with products for which analysts forecast a higher future underlying dividend

than the publicly available historical dividend. We also find that issuers’ tendency to ex-

ploit this channel is stronger when product value sensitivity to dividends and the portion

of retail investors are larger. In addition, issuers select underlying stocks with a higher

forecasted than historical dividend.
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Although we take care to consider price differentials, relevant controls, robustness

tests, and refinements to exclude alternative explanations of our results, the challenge

in making a causal claim between imperfect investor information and security issuance

behavior is the difficulty of isolating differences in issuers’ informational advantage inde-

pendent of observable and unobservable product, macroeconomic, competition, or issuer

characteristics. We address this identification problem by exploring a discontinuity in

issuers’ informational advantage regarding the timing of underlying dividends. Specifi-

cally, structured products’ payoff is defined on the stock price at maturity and investors

are not entitled to receive the underlying’s dividend. Thus, investors overvalue a prod-

uct if they expect the share price at maturity to still trade cum-dividend but it already

trades ex-dividend. This overvaluation due to the misjudgment of the dividend payment

date can only occur with products that have an ex-dividend date shortly before matu-

rity (just–before products), but not for those that have the ex-dividend date right after

maturity (just–after products).1 Therefore, issuers are solely able to exploit superior

dividend timing information with just–before products. We explore this discontinuity in

issuers’ informational advantage around future ex-dividend dates using a standard Re-

gression Discontinuity Design (RDD). We find that whereas just–before products have

very similar observable characteristics as just–after products, the former are discontin-

uously more overpriced than just–after products. This result confirms that issuers use

their informational advantage to push overpriced securities to investors.

Our results relate to different streams of the literature. First, several studies analyze

investors’ misjudgment in the financial innovation market due to product complexity,

ignorance of fees, obfuscation, or lack of sophistication (DeMarzo, 2005; Coval, Jurek,

and Stafford, 2009; Choi, Laibson, and Madrian, 2009; Carlin, 2009; Carlin and Manso,

2011; Célérier and Vallée, forthcoming). We contribute to this literature by identifying

investors’ inferior access to information as an important reason for their misjudgment.

Second, we speak to the literature that recognizes imperfect investor information as

an important friction in the financial innovation market (Ashcraft and Schuermann, 2008;

An, Deng, and Stuart, 2011). Gennaioli, Shleifer, and Vishny (2012), Gorton and Met-

rick (2012), Stein (2012), and Hanson and Sunderam (2013) argue that this friction is

crucial to the entire financial system as it can cause large market disruptions when new

1In case just–after product investors expect the ex-dividend date earlier than the true date, their
misjudgment could even induce them to undervalue a structured product.
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information arrives. Nevertheless, surprisingly little is known about the channels be-

hind imperfect investor information. An exception is the study of Piskorski, Seru, and

Witkin (2015) disclosing significant asset quality misrepresentation by issuers of residen-

tial Mortgage-Backed Securities. We contribute to this literature by identifying volatility

and dividends as two important channels behind investors’ information lack. A thorough

understanding of the channels is essential to define appropriate policy measures that

mitigate this friction. In addition, our results on the design of structured products em-

phasize the systemic stability concern. Specifically, they imply that financial innovators

deliberately structure products for which investors have inferior information.

Third, we complement studies on the pricing of structured products. According to

this literature, it is challenging to explain the variation of structured products’ IP. Hen-

derson and Pearson (2011) analyze the mispricing of 64 retail structured products. Out

of nine potential explanatory variables, only one (implied volatility of the underlying)

is significantly associated with IPs. Benet, Giannetti, and Pissaris (2006) also find a

substantial IP. They show that both the underlying’s implied volatility and product ma-

turity play a role. Wallmeier and Diethelm (2009) demonstrate that investors overpay

structured products, particularly if their coupon payments are large. Rieger (2012) and

Hens and Rieger (2014) argue that investors overvalue structured products because they

assign wrong probabilities to some future scenarios. Finally, Wilkens, Erner, and Röder

(2003) and Stoimenov and Wilkens (2005) investigate secondary market prices of struc-

tured products. We contribute by illustrating that imperfect investor information is an

economically important pricing determinant.

2 Structured product data sample

This section provides an introduction to the market for structured products and presents

our data sample.

2.1 The market for structured products

Structured products are investment instruments with a payoff that is linked to the per-

formance of one or several underlyings from a wide range of asset classes such as equity,

fixed-income, and commodities. They are composed of multiple financial instruments,

commonly a combination of bonds, equities and derivatives. Issuers can tailor structured

4



product to the need of investors. The flexible product design, however, also allows issuers

to mitigate competition by impeding comparability with products of competitors. Most

structured products refer to equity underlyings both in the US and in Europe (Bloomberg

Brief: Structured Notes, 2015; Structured Retail Products, 2015). Structured products

are issued on the primary market and subsequently traded on the secondary market until

they expire. In this study, we focus on the primary market for two reasons. First, the

secondary market is relatively illiquid and has a much lower traded volume than the

issue volume on the primary market (SVSP, Schweizerischer Verband für Strukturierte

Produkte, 2013). Second, we are not only interested in issuers’ pricing decision but also

in the design of products. The product structure, however, is determined at issue.

The market for structured products has grown substantially. As of December 2012,

Bouveret, Crisóstomo, Gentile, Mendes, Pereira da Silva, and Silva (2013) report a total

outstanding volume of structured products in Europe of almost EUR 770bn. This notional

volume amounts to about 4% of household financial wealth, or 12% of mutual funds’ asset

under management in the European market. Also the US market has steadily increased

its share in the global market for structured products. In 2014, the US volume sales

account for more than USD 41bn. This amount corresponds to about 40% of the new

net cash flows to the US mutual funds industry in the same year. In 2012, the portion

was only 20% (Investment Company Institute, 2015).

In this study, we focus on a large database of structured products issued in the Swiss

market. Banks in this market rely on standardized product categories, which is impor-

tant for the systematic collection of comparable products (Structured Retail Products,

2015). With a total sales volume of USD 21.3bn, Switzerland is the second largest Eu-

ropean issuer of structured products in 2014 (Structured Retail Products, 2015). The

Swiss market is also global leader in terms of structured products volume invested in cus-

tody accounts (Swiss Bankers Association, 2011). Swiss banks heavily engage in the US

market. The two largest banks in Switzerland, Credit Suisse and UBS, hold a combined

market share of almost 20% of the volume of all structured products issued in the US

during 2014 (Bloomberg Brief: Structured Notes, 2015).

2.2 Data sample

Our main database is provided by Derivative Partners. It contains term sheets of all

structured products on equity underlyings issued in Switzerland between January 2005
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and December 2010. The database, which is also used in Arnold, Schuette, and Wagner

(2016), comprises 15’170 publicly issued products that target the retail market.2

From this database, we exclude products on multiple underlyings (14’138) and with

missing data (20), leaving us with a total sample of 1012 structured products on a single

equity underlying. We focus on products with a single equity underlying because they can

be replicated from observed market prices of interest rates and EUREX options.3. The

availability of market prices is important to investigate the difference between structured

product prices to retail investors and replication (market) prices to institutional investors.

Our sample of priced products is considerably larger than in existing studies. For example,

Benet, Giannetti, and Pissaris (2006) investigate 31 structured products, and Henderson

and Pearson (2011) consider 64.

Table 1 reports the number of launched products grouped by issuer, product category,

and year. The products were issued by two Swiss banks and 5 international banks in

Switzerland. Together, the two Swiss banks, Credit Suisse and UBS, account for more

than two third of our sample. Goldman Sachs and Royal Bank of Scotland issue a share of

14.3% and 13.2%, respectively. The sample contains six different product categories with

87 unique underlyings. Discount Certificates, Barrier Reverse Convertibles, and Bonus

Certificates are the most prevalent categories. From 2005–2008, the number of issued

structured products increased each year, whereas it declined between 2008 and 2010.

INSERT TABLE 1 NEAR HERE

Product payoff profiles are defined in the term sheets. On the initial fixing date, the

issuing bank defines the terms of a structured product such as the issue price, strikes,

coupon payments, barrier level, redemption, and all relevant dates. These terms are

communicated to the investor in the final term sheet of a product. Although Derivative

Partners provides a database which lists all final term sheet items of every structured

product, we manually double check each database entry with the corresponding term

sheet. Product categories in our sample have the following profiles:

With a Discount Certificate, the investor purchases an underlying stock at a discount

but resigns the upside stock performance beyond a prespecified cap. If the stock closes

2Above a minimum investment threshold around CHF 25’000, most issuers in the Swiss market offer
individual structuring of products on behalf of clients. These tailor-made products are issued privately
and, hence, not included in the database.

3EUREX options data is provided by the FMI department of the Karlsruhe Institute for Technology.
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above this cap at maturity, the investor obtains a payoff equal to the difference between

the initial stock and the strike prices. Otherwise, he receives the stock performance.

Barrier Discount Certificates likewise embed a discount feature that allows the in-

vestor to buy the underlying stock below its market price. The barrier feature provides

conditional capital protection. The investor receives a prespecified payoff if the stock

never touches the lower barrier during the product’s lifetime. If this barrier is touched,

the capital protection is cancelled and the product converts into a Discount Certificate.

Reverse Convertibles have the same payoff profile as Discount Certificates. The only

difference is that Reverse Convertibles also pay coupons and have a nominal amount.

Capped Outperformance Certificates allow the investor to participate disproportion-

ately in the performance of the underlying stock above the strike price. If the stock

closes below this strike at maturity, the product has the same payoff structure as the

stock. Above the strike, the investor obtains a multiple of the difference between the

stock and strike prices up to a predetermined cap.

Barrier Reverse Convertibles pay a fixed coupon and are capital protected as long

as the underlying stock does not touch a prespecified lower barrier during the product’s

lifetime. If the barrier is touched, the capital protection is canceled and a Barrier Reverse

Convertible converts into a Reverse Convertible.

Bonus Certificates allow the investor to participate in the underlying stock with a

down-side protection at a fixed bonus level as long as the stock does not touch a pre-

specified lower barrier during their lifetime. Once the barrier is touched, the down-side

protection is canceled and the Bonus Certificate simply follows the stock performance.

In contrast to a direct investment in the underlying stock, the investor is not entitled

to receive the stock’s dividend payments. This applies to all product categories.

3 Product pricing and imperfect information

In this section, we investigate the impact of imperfect information on issuers’ premium

from launching structured products.

3.1 Dependent variable: Issue premium

We use the issue premium (IP) of structured products as our dependent variable. The

issue premium is the percentage difference between the issue price and the replication
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price of a structured product (Henderson and Pearson, 2011):

IP =
IssuePrice−ReplicationPrice

IssuePrice
(1)

The issue price is the initial price at which banks sell a structured product to retail

investors. Due to their access to fixed income and option markets, institutional investors

can replicate the payoff profile of a structured product with traded instruments. Thus,

the replication price is the market price to institutional investors of replicating a product’s

payoff profile. Intuitively, the IP is the percentage difference between prices to retail and

institutional investors of the same payout profile at the same time. As a product issuer

can hedge his future obligation to the retail investor when selling a structured product

by simply replicating the payoff profile, the IP reflects the issuer’s profit of launching a

product.4. In addition, the IP captures issuance fees and commissions

Whereas product term sheets provide us with issue prices, we need to calculate repli-

cation prices. First, we determine the fixed income and option components that replicate

a structured product. Second, we derive the price of each component from observed mar-

ket prices. Finally, the replication price of a structured product is the sum of the prices of

the components that replicate its payoff profile. The Appendix illustrates the derivation

of replication prices in detail.

We do not incorporate issuance fees or commissions into our calculation of the is-

sue premium. Whereas they affect the gross issue premium, fees and commissions are

standardized and fixed across product categories such that they are unlikely to be sys-

tematically correlated with the informational advantage of issuers.

3.2 Explanatory variables and hypotheses

Term sheets disclose most parameters relevant to assess the value of a structured product.

Thus, it is relatively easy even for less financially sophisticated retail investors to compare

term sheet information between different products. For instance, a product with a higher

coupon seems more attractive than a product with a lower coupon but otherwise identical

term sheet information. It is, however, more challenging for retail investors to compare

products along dimensions that are not exposed in term sheets. Therefore, we argue that

it is easier for issuers to sell structured products to retail investors that are overpriced in

4We control for additional factors affecting hedging costs in our analysis.

8



terms of product characteristics which are not observable in term sheets. Two important

replication price determinants of structured products on which there is no information in

term sheets are the underlying’s implied volatility and expected dividend.

We define implied volatility (Impl Vola) as the annualized implied volatility of an at-

the-money put option on the product’s underlying with a maturity equal to the product’s

maturity based on the approach outlined in the Appendix. Impl Vola is available to prod-

uct issuers through, for example, EUREX or BLOOMBERG. It is difficult for retail in-

vestors to obtain implied volatility estimates to value a structured product because access

to traded options data is restricted and costly, e.g., a one-year access to BLOOMBERG’s

proprietary computer system is charged around $25,000 per user. Thus, retail investors

have to resort to readily available but more heuristic volatility measures. As suggested by

the literature (Daniel, Hirshleifer, and Teoh, 2002; Sirri and Tufano, 1998), they tend to

rely on historical information. In addition, structured product term sheets often contain

a picture of the historical price evolution over previous years. Therefore, we incorpo-

rate the historical volatility of a product’s underlying to capture the volatility estimate

available to retail investors. Historical volatility (Hist Vola) is calculated as the standard

deviation of a product underlying’s returns over the 255 trading days before the initial

fixing date. We choose 255 days because it corresponds to the median product maturity

in our sample.

Hist Vola can diverge from the Impl Vola available to issuers. Because replication

prices of all products in our sample decline with volatility, issuers can exploit this di-

vergence if retail investors underestimate volatility and, hence, overestimate a product’s

value. Thus, an Impl Vola larger than Hist Vola, which we capture with a dummy equal

to one (Higher Vola), constitutes a volatility information advantage for a structured prod-

uct issuer. Our first hypothesis is that issuers demand larger premiums for products over

which they have a volatility information advantage.

Expected dividends of a product’s underlying are a second crucial pricing factor, which

is not provided in product term sheets. Product issuers usually have access to dividend

forecasts such as IBES. We capture the dividend information of issuers (IBES Div Yield)

as the ratio between the present value of expected dividend payments based on IBES

forecasts that occur during the lifetime of a product and the stock price of the underlying

at the initial fixing date.

Dividend forecasts are restricted and costly. Retail investors can instead resort to
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historical dividend information, which is publicly available in the Internet, to estimate

expected dividends. We capture this information by Hist Dividend Yield that is the ratio

between the present value of expected dividend payments based on historical dividends

in the 255 days prior to the initial fixing date and the underlying’s stock price at the

initial fixing date. We consider 255 days because this lifetime equals the median product

maturity in our sample.

Structured product investors are usually not entitled to receive dividend payments

because they only hold derivative positions on the underlying. Since the value of all

products in our sample is positively related to the stock price of the underlying (all

products exhibit a delta that is strictly larger than zero), a higher future dividend payment

during the lifetime of a structured product ceteris paribus reduces the product’s current

replication price. Thus, an investor overvalues a structured product if he underestimates

future dividends. We proxy this dividend information advantage of the issuer with a

dummy (Higher Div) that is equal to one if IBES Dividend Yield is larger than Hist

Dividend Yield, and zero otherwise. Our second hypothesis is that issuers demand larger

premium for products over which they have a dividend information advantage.

3.3 Control variables

We incorporate the standard control variables of Henderson and Pearson (2011) into our

analysis. Excess Return Underlying is calculated as the return of the 3 and 12 months

continuous annual returns of the underlying in excess of the 3 and 12 months continuous

annual returns of the Swiss Market Index (SMI), respectively. Log Market Capitalization

is the natural logarithm of the market value of equity of the underlying (in USDbn) at

the initial fixing date, and Turnover Underlying the natural logarithm of the dollar value

(in USDm) of the cumulated trading volume of the underlying during 1 and 3 months

prior to the initial fixing date, respectively. 20d Call Volume and 20d Put Volume are the

cumulated trading volumes of EUREX call (put) options written on the underlying during

the 20 trading days preceding the initial fixing date of a structured product divided by

the volume of call (put) options written on all underlyings during the same time period.

We obtain Delta (Vega) as a product’s first order derivative with respect to the price

(volatility) of the underlying using the Black-Scholes formula, scaled by the product’s

denomination. Delta (Vega) of products with barrier options is calculated numerically.

Average Trading Size is the logarithm of the average trading size of a structured product
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in USD on the secondary market. All data on underlyings is from Datastream, on option

components from the EUREX database, and on dividend consensus estimates from IBES.

3.4 Descriptive statistics

Descriptive statistics are presented in Table 2. The average issue premium in our sample is

1.48%. This magnitude coincides with the average issue premium in empirical samples of

similar simple short term structured products (Burth, Kraus, and Wohlwend, 2001; Baule,

Entrop, and Wilkens, 2008; Célérier and Vallée, forthcoming). Outside of Switzerland,

issue premiums tend to be larger. The studies of Stoimenov and Wilkens (2005) for the

German market and of Henderson and Pearson (2011) for the US market find average

issue premiums of 3.89% and more than 8%, respectively. The average implied and

historical volatilities are 0.29% and 0.31%, respectively. Whereas they are of similar

average magnitude, historical volatility has a larger standard deviation. 563 of the 1012

products in our sample have a Higher Vola dummy of one. IBES Dividend Yield and

Hist Dividend Yield have similar means and quantiles. Both dividend measures are

characterized by a relatively low standard deviation. For 608 of the 1012 products in our

sample, Higher Div is equal to one. The correlation between Higher Vola and Higher Div

is 0.08. Thus, the two dummy variables mainly identify two distinct product groups.

INSERT TABLE 2 NEAR HERE

The Vega of all our products is negative, which implies that investors are always

short volatility. The Delta of sample products is strictly positive. Thus, investors benefit

from underlying price increases or dividend reductions during the products’ lifetime. On

average, products have a time to maturity of 294 trading days.

3.5 Empirical approach

We start by investigating the issue pricing of structured products. To this end, we run

cross-sectional OLS regressions of IP on our explanatory and control variables. Our main

analysis is based on the following regression model:

IPi = α + β1Higher Dummyi + βjControlsij + εi. (2)

IPi is the IP of product i. It corresponds to the percentage difference between the
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prices to retail and institutional investors for the same payout profile at the same time.

Higher Dummyi represents our information advantage proxy, which is the Higher Vola

dummy for volatility and the Higher Div for dividends. Controlsij is a vector of the

control variables of Section 3.3. In addition, we include year fixed effects in all regressions

to control for aggregate trends such as in product demand. We use different specifications

and refinements of the basic regression model to reinforce our hypotheses.

3.6 Volatility results

In Column (1) of Table 3, we replicate the setting of Henderson and Pearson (2011) and

find that our results are consistent with their study. Whereas Impl Vola is positively asso-

ciated with IPs, the remaining controls are either insignificant or not robust to alternative

controls (see Columns (2)–(6)).

INSERT TABLE 3 NEAR HERE

In Column (2), we add historical volatility (Hist Vola) and the Higher Vola dummy.

The coefficient on Hist Vola suggests that issuers reduce IP with historical volatility. In

addition, the coefficient on Higher Vola implies that issuers demand a 0.542% larger IP

for products with a higher implied than historical volatility. This magnitude is important,

accounting for more than one third of average IPs. These results provide a first indication

that issuers collect higher IPs if they have a volatility information advantage, i.e., if retail

investors underestimate volatility based on their historical information. A caveat with

our Higher Vola dummy is that it could be correlated with a volatility risk premium.

Whereas this premium affects option prices (e.g., Carr and Wu, 2016), the advantage of

using IP in our regressions is that the IP corresponds to the difference between prices to

retail and institutional investors. Thus, even if the volatility risk premium affects option

prices, it should not drive the price difference of the same option to different investors.

We also calculate the average Impl Vola of products that have a Higher Vola dummy

equal to one. Their average Impl Vola (0.265%) is significantly smaller than that of

products with a Higher Vola dummy of zero (0.314%). Thus, issuers increase the price of

products not simply when Impl Vola is large, but also when Impl Vola is relatively small

yet larger than the historical volatility. Therefore, imperfect information seems to play

a role besides the financial literacy explanation in Henderson and Pearson (2011) that

retail investors are simply unaware of the impact of volatility on structured products.
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To investigate whether the quantitative magnitude of the Higher Vola coefficient is

consistent with our information exploitation story, we first calculate the difference be-

tween the implied and historical volatilities for all products with Higher Vola equal to

one. The approximate value of a product’s informational advantage for an issuer is then

retrieved by multiplying this difference with the product Vega. Intuitively, this value

is a retail investor’s percentage overvaluation of a product if he relies on the historical

instead of the implied volatility. Issuers’ average informational advantage value across

all products with a dummy equal to one is 1.86%. Thus, the coefficient of Higher Vola

in Column (2) suggests that issuers are, on average, able to exploit approximately 30%

of their informational advantage. The economic magnitude of this exploitation is plausi-

ble given that approximately half of products are sold to retail investors in Switzerland

(SVSP, Schweizerischer Verband für Strukturierte Produkte, 2013) and that Hist Vola is

only a proxy of issuers’ volatility informational advantage.

A possible caveat with our results in Column (2) is multicollinearity. Hence, we

consider the continuous interaction between historical and implied volatilities in Column

(3) and standardize Impl Vola, Hist Vola, and their interaction term.5 The significantly

negative coefficient of this interaction confirms that banks particularly demand a larger

IP for products with high implied volatility when historical volatility is low.

We now present several refinements to support our first hypothesis that issuers exploit

imperfect volatility information.

If exploitation of imperfect volatility information drives our results, then the coef-

ficient on Higher Vola should be more pronounced for products with a more negative

Vega. For such products, investors particularly overestimate product values when they

underestimate volatility. Indeed, the coefficient on the interaction Higher Vola x Vega

in Column (4) shows that if Vega is more negative, the impact of Higher Vola on IPs is

stronger.

The literature finds a negative relation between trading size and investor sophisti-

cation (Battalio and Mendenhall, 2005; Bhattacharya, Black, Christensen, and Mergen-

thaler, 2007; Bhattacharya, 2001). Thus, we calculate the average trading size of each

structured product on the secondary market (Average Trading Size) and use this variable

in Column (5) as a proxy of the sophistication of a certain product’s investors. The

5For all regressions in each column, we test for multicollinearity using Variance Inflation Factors
(VIF). Only the interaction term between Impl Vola and Hist Vola exhibits a critical VIF.
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interaction between Higher Vola and Average Trading Size has a significantly negative

coefficient. This result supports our imperfect information exploitation hypothesis be-

cause it implies that issuers particularly use their informational advantage to increase the

price of securities when investor sophistication is low.

Following the idea of Célérier and Vallée (forthcoming) that complexity drives IPs,

we also incorporate a proxy of complexity in Column (6). We define complexity as the

number of different features contained in a product (Features). Each strike, barrier, or

the presence of coupon payments adds one additional feature to a structured product.

The idea behind this proxy is that the valuation of products that consist of more features

is more complex. The result in Column (6) confirms the positive relation between com-

plexity and IP in Célérier and Vallée (forthcoming). However, the coefficient of Higher

Vola is hardly affected by this additional control. This finding suggests that issuers’

informational advantage is a driver of IPs besides product complexity.

3.7 Dividends results

We now test whether product issuers exploit their informational advantage regarding

dividends. The results are presented in Table 4. In the first column, we include IBES Div

Yield as a measure of forecasted dividend payments. The significantly positive coefficient

of IBES Div Yield shows that an increase in expected dividend yield raises IP. The

magnitude of the coefficient implies that increasing IBES Div Yield by one standard

deviation (0.022) enhances IP by 0.15%.

INSERT TABLE 4 NEAR HERE

We incorporate our proxy of retail investors’ information on dividends in Column

(2). The significantly negative coefficient of Hist Div Yield suggests that IPs are lower if

historical dividends are higher. In addition, products with Higher Div equal to one carry

an IP that is on average 0.616% larger. This effect is economically important because

it corresponds to an increase of more than 40% of the average IP. These results provide

a first indication for our second hypothesis that issuers collect higher IPs if they have a

dividend information advantage over retail investors.

To investigate whether the quantitative magnitude of the Higher Div coefficient is con-

sistent with our information exploitation story, we first calculate the difference between

the present values of expected IBES dividends and historical dividends over the lifetime

14



of all products with Higher Div equal to one. We then obtain the approximate value

of a product’s informational advantage for an issuer by multiplying this difference with

the product delta. Intuitively, this value is a retail investor’s percentage overvaluation

of a product if he relies on historical instead of forecasted dividends. Issuers’ average

informational advantage value across all products with a dummy equal to one is 1.43%.

Thus, the coefficient of Higher Div in Column (2) suggests that issuers are, on average,

able to exploit around 43% of their informational advantage. The economic magnitude

of this exploitation is plausible given that approximately half of products are sold to re-

tail investors in Switzerland (SVSP, Schweizerischer Verband für Strukturierte Produkte,

2013) and that Higher Div is only a proxy of issuers’ informational advantage.

A possible caveat with our results in Column (2) is multicollinearity. Hence, we

consider the continuous interaction between IBES Div Yield and Hist Dividend Yield

in Column (3), and standardize these variables. The significantly negative coefficient of

the interaction term confirms our conjecture that issuers demand a higher IP with larger

expected dividends particularly if historical dividends are small.

We now present several refinements to support our second hypothesis that issuers

exploit imperfect dividend information.

In Column (4), we include the interaction between Higher Div and Delta. If Delta

is larger, underestimating dividends has a stronger impact on retail investors’ perceived

product value. The significantly positive coefficient of this interaction suggests that our

dividend information exploitation result is more pronounced for products with higher

sensitivity to this information. This finding supports our imperfect dividend information

exploitation hypothesis.

Column (5) shows that the interaction between Higher Div and Average Trading Size

has a significantly negative coefficient. This result supports the information exploitation

hypothesis because it implies that issuers particularly use their dividend information

advantage to overprice securities when investor sophistication is low. Finally, the last

column confirms that the coefficient of Higher Div is not driven by complexity.
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4 A regression discontinuity design for dividend pay-

ments around the maturity date

Product issuers have privileged access to dividend timing information compared with

retail investors. For example, they can rely on internal and external analyst forecasts,

or on timing information from market makers’ order books (Chae, 2005). In addition,

some retail investors lack information on the impact of this timing on structured product

payoffs. For instance, the ex-dividend date is relevant for this payoff and not the dividend

announcement, payment, or record date. In this section, we exploit a discontinuity in

issuers’ dividend timing information advantage to support our second hypothesis.

4.1 Intuition

A structured product investor is not entitled to receive the underlying’s dividend that

accrues during the lifetime of a product, i.e., product payoffs are defined on the under-

lying’s ex-dividend price. A discrete dividend before product maturity then reduces the

investor’s final payoff of a structured product. Thus, even a minor misjudgement of future

ex-dividend dates can have a large impact on perceived product values. Specifically, if a

retail investor misjudges the ex-dividend date after product maturity but the underlying

actually goes ex-dividend before or at maturity, he obtains the product payoff based on

the ex-dividend share price instead of cum-dividend.6 Therefore, retail investors may

overvalue a product if they have incomplete dividend timing information and the future

ex-dividend date occurs shortly before product maturity (just–before products). This

overvaluation cannot occur if the future ex-dividend date occurs shortly after product

maturity (just–after products). In this case, investors would undervalue a structured

product if they misjudge the ex-dividend date to occur before product maturity.7 Thus,

issuers can only use their informational advantage on dividend timing to push overvalued

securities to investors with just–before products but not with just–after products.

This discontinuity of issuers’ informational advantage at product maturity is quanti-

tatively important for product IPs. For instance, consider a product A with a maturity

of one year, one discrete dividend payment of 1.5%, an ex-dividend date one day after

6A share starts trading ex-dividend in the opening of an ex-dividend date, but a structured product
matures at closing.

7If investors misjudge the ex-dividend date to occur after the future ex-dividend date, this misjudg-
ment would have no impact on their product valuation as both dates occur after product maturity.
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maturity, a Delta of one, and an IP equal to our sample’s average of 1.48%. An otherwise

identical product B with a maturity that is just one day shorter than that of product

A has an around 1.5% lower replication price (ignoring discounting). Thus, if retail in-

vestors misjudge the future dividend date of product B to be one or more days later,

such that they are ready to pay the same issue price as for product A, product B’s IP

doubles to 1.48% + 1.5% = 2.98% compared with product’s A IP of 1.48%. Whereas

issuers double their proceeds with product B, however, investors attain a less attractive

product. Specifically, the 1.5% lower replication price of product B implies that, on av-

erage, investors attain a 1.5% smaller investment performance with product B than with

product A.

4.2 RD approach and results

We now exploit the discontinuity in issuers’ informational advantage regarding dividend

timing information around product maturity dates to investigate the impact of imperfect

information on an outcome variable that captures product performance. To this end, we

closely follow the standard regression discontinuity (RD) approach in Chang, Hong, and

Liskovich (2014).

We define our assignment variable as the difference between the closest expected ex-

dividend date and the product maturity date expressed in days. The closest expected

ex-dividend date is the product underlying’s expected ex-dividend date nearest to product

maturity. We estimate expected ex-dividend dates as the historical ex-dividend dates in

the year prior to the initial fixing date of a product.8 A negative (positive) value of the

assignment variable indicates that the expected ex-dividend date occurs before (after)

the maturity date. A product with a negative or zero assignment variable (just–before

product) is treated because issuers have an exploitable informational advantage with

respect to dividend timing. A product with a positive assignment variable is non-treated

(just–after product). We expect that treated products are more overpriced compared to

non-treated products.

We use the unexplained product performance (UP) as a measure of structured prod-

ucts’ initial overpricing to retail investors. The outcome variable UP is the fraction of a

product’s ex-post performance that is not explained by the performance of its underly-

8Ex-dividend dates are usually relatively stable. The mean deviation from the previous year’s date
in our sample is only seven days.
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ing. We use UP as an overpricing measure because higher overpricing, i.e., larger issue

premiums (IPs), leads to inferior unexplained product performance for investors. In our

main analysis, we do not directly use IP as the outcome variable. The calculation of IPs

is based on replication prices that depend on our own dividend date projections. Thus,

minor dividend date projection errors could lead to a spurious correlation between treat-

ment assignment and the outcome variable IP. Such errors may even cause discontinuities

in the outcome variable around the threshold and, hence, drive our results from the RD

design. In contrast, UP is independent of how we calculate initial replication prices and,

thus, cannot exhibit a discontinuity around the threshold due to our projection errors.

Hence, we proceed by using UP in the RD design.9

To obtain UPs, we collect the residuals of the regression

Product Performancei = α + β1ReturnUnderlyingi+

β2ProductCategoryi + β3ReturnUnderlyingi xProductCategoryi + εi.
(3)

Product Performance is the annualized performance of product i calculated as the

return between the issue price and the final payoff and Return Underlying is the annu-

alized total return of the underlying of product i multiplied by delta. Multiplying the

underlying return with delta accounts for the property that structured products have

differing sensitivities to their underlying. As alternative product categories exhibit di-

verse payout profiles, we also incorporate Category that captures the product category of

product i and its interaction with Return Underlying. We present the regression output

in Table 5. With an R-squared of 90%, the regression model reflects the variation in

Product Performance very well. The residuals of Eqn. (3) exhibit a standard deviation

0.093. We use these residuals as our outcome variable UP. A low UP indicates high ini-

tial overpricing. UP, however, could also be affected by a misspecification of the pricing

model in Eqn. (3). We mitigate this concern in two ways. First, we apply alternative

pricing model specifications. Second, we measure the UP differences between treated and

non-treated products within the RD approach and, thus, systematic misspecifications

should cancel out.

INSERT TABLE 5 NEAR HERE

9We repeat the analysis by using IP as the outcome variable in the RD design and obtain similar
results.
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Figure 1 depicts UPs around the threshold. We fit a linear function on either side of

the threshold using binwidths of 5 and 10. Each bin represents the average of either 5

or 10 observations.10 The discontinuity in UPs at the threshold implies that just–before

products have a discontinuously lower unexplained product performance than just–after

products.

INSERT FIGURE 1 NEAR HERE

If the variation in the treatment near the threshold is approximately randomized,

just–before and just–after products should only differentiate with respect to issuers’ in-

formational advantage. To ensure randomization around the threshold in our application,

issuers should not be able to completely manipulate the difference between ex-dividend

and maturity dates (McCrary, 2008). We test this randomization condition with the

standard manipulation test based on McCrary (2008) and find no discontinuity in the

density function of the assignment variable around the threshold (t-statistics of 0.76).

Thus, manipulation of the assignment variable is not a concern for our analysis.

In addition to the statistical evidence, we also provide intuitive practical evidence

that issuers cannot completely manipulate the assignment variable. Specifically, Figure

2 shows that banks issue structured products throughout the year. Around 80% of ex-

dividend dates in our sample, however, occur in the dividend season during March, April,

or May. Thus, to create just–before products by manipulating their maturities, issuers

would have to considerably deviate from standardized maturities (0.5, 1, 1.5, 2, 2.5 or 3

years) with products issued in June, July, August, December, January, or February. We

find, however, that 76% of products issued in these month have standardized maturities,

which is similar to the 70% of products with standardized maturities issued in March,

April, May, August, September, or October.

We also plot products’ time to maturity around the RD threshold in Figure 3. Most

products have a maturity of one or just below one year because products with a maturity

beyond one year are subject to the stamp tax in Switzerland. Whereas issuers could

manipulate the just–after products with a one year maturity on the right-hand side of

the threshold to become just–before products by simply increasing their maturity by a

few days, such manipulated products would lose their tax advantage. As almost no dots

on the right-hand side of the threshold are slightly above the one year maturity line,

10The number of observations per bin can vary if there is an unusually high or low number of obser-
vations on a given day.
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Figure 3 implies that issuers abstain from such manipulation. This example shows that

exogenous reasons for product maturities such as taxes prevent issuers from completely

manipulating the assignment variable.

INSERT FIGURE 2 NEAR HERE

INSERT FIGURE 3 NEAR HERE

We now apply a fuzzy RD design to establish a causal relationship between issuers’

informational advantage and the degree of product overpricing. We use a fuzzy RD

approach because at product initiation, issuers only have estimated future ex-dividend

dates but not realized ex-dividend dates and, hence, do not know with certainty whether

a product is treated. To explore the discontinuity in issuers’ informational advantage

around product maturity dates, we use our projected ex-dividend dates as an instrument

for the actual ex-post realized ex-dividend dates. Following Chang, Hong, and Liskovich

(2014), we employ a two-stage least-squares approach. As we have no prior on the

functional relationship between our assignment variable and the outcome variable, we

use a local polynomial of order one to construct the point estimator.11

The first-stage regression is as follows:

ExPosti = α1 + β1Daysi + ExAntei[α2 + β2Daysi] + εi. (4)

Ex Posti is a dummy equal to one if the actual (ex-post) ex-dividend date closest

to the maturity date occurred after product maturity and zero otherwise. Daysi is the

difference between our projected ex-dividend date closest to the maturity date and the

maturity date measured in days. Ex Antei is a dummy equal to one if our projected

ex-dividend date occurred after product maturity and zero otherwise. We present the

regression output in Table 6.

INSERT TABLE 6 NEAR HERE

In the second-stage regression, we apply the fitted values from Eqn. (4) as an instru-

ment for ExPosti:

UPi = α1 + β1Daysi + ̂ExPosti[α2 + β2Daysi] + εi. (5)

11The results are also robust for local polynomials of order two or higher.
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UPi is the outcome variable, ̂ExPosti is the predictor for Ex Posti estimated in Eqn.

(4), and α2 is the coefficient of discontinuity at the threshold. If issuers push overpriced

products to retail investors when their informational advantage is higher, α2 should be

positive.

The RD design requires the specification of a bandwidth determining the number

of observations on either side of the threshold. We follow the rule-of-thumb (ROT)

bandwidth calculation presented in Lee and Lemieux (2010). The optimal bandwidths

of the UPs requires 86 observations on the left-hand side and 51 observations on the

right-hand side of the threshold, respectively. These bandwidths corresponds to a time

window of [-19, 19] days around the maturity date.

The results of the second-stage regression are presented in Table 7. We find a positive

and significant discontinuity in UP of 10.1% at the threshold between treated and non-

treated products with a t-statistics of 2.18. This discrete jump represents 1.1 times the

one-standard-deviation change in UPs. According to our RD design, just–before and

just–after products should only differentiate in issuers’ informational advantage around

the threshold. Thus, the upward jump implies that issuers increase the price of products

when they have an informational advantage over investors.

Table 7 also reports the coefficients and t-statistics of the second-stage regression for

all cut-offs in a six-week time window around our assignment variable threshold of zero.

As expected, days around zero are significant. From all remaining cut-offs, only day six

exhibits a marginally significant discontinuity. This result confirms that the discontinuity

is important only around our threshold.

INSERT TABLE 7 NEAR HERE

To further verify the RD assumption of local randomization, we investigate whether

observable variables also exhibit discontinuities around the threshold. To this end, we

repeat our RD approach but replace UPi of Eqn. (5) with the respective variable. A

significant jump/drop of alternative variables besides UP at the threshold could raise the

concern that the just–before products used in our RD approach differ discontinuously

from just–after products in other dimensions than the informational advantage, which

could drive our main finding. The results are presented in Table 8. We find no signif-

icant discontinuity for most observable variables. Only Delta is marginally significant

and positive. This jump, however, tends to reduce UP for just–after products compared

with just–before products (see Eqn. 3) and, hence, works against finding a positive dis-

21



continuity in UP. Another caveat is that the discontinuity in UP could be driven by

a discontinuity in the underlyings’ return. We observe, however, no discontinuity for

Underlying Return. We further test whether the time to maturity of just–before prod-

ucts deviates more often from standardized time to maturities compared with just–after

products. We measure Deviation as the absolute distance between the structured prod-

ucts’ time to maturity and the closest standardized time to maturity (0.5, 1, 1.5, 2, or

3 years) in years. A negative coefficient would indicate that issuers deviate more often

from standardized maturities before than after the threshold to manipulate product ma-

turities, which could impact UPs due to, for example, tax reasons. We find no significant

discontinuity.

INSERT TABLE 8 NEAR HERE

Overall, our RD approach confirms that issuers provide investors with overpriced

products particularly when their informational advantage is larger.

5 Product design and imperfect information

According to Sections 3.2 and 4, issuers install a larger IP for products on underlyings

with a higher informational advantage. In this section, we examine whether issuers also

structure products towards their informational advantage regarding volatility and divi-

dends. To this end, we employ a matched sample approach to compare the informational

advantage of underlyings that are chosen for a product to otherwise similar underlyings

that are not chosen. This approach allows us to reduce the bias due to confounding

variables and, thus, increases the validity of our results.

We proceed as follows. We start by defining the set of underlyings that issuers possibly

choose for their structured products. We assume that this available set consists of all

underlyings that have ever been chosen by an issuer during our observation period. For

each week and underlying in the available set, we calculate Impl Vola, Hist Vola, IBES Div

Yield, and Hist Div Yield for a time to maturity of 255 days. We choose 255 days because

this corresponds to the median product maturity in our sample. We proxy information

advantage with our Higher Vola and Higher Div dummies defined in Section 3.2.

For each underlying that is actually chosen for a structured product, we then select

five underlyings from the available set that are the closest neighbors with respect to the
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square root of the sum of squared distances weighted by the inverse sample covariance

(Mahalanobis distance). As matching variables, we use the control variables suggested

by Henderson and Pearson (2011), the index of the underlying, and the corresponding

industry based on the two-digit Standard Industrial Classification (SIC) code. The ma-

jority of products, namely 579 out of the 1012, is issued on underlyings listed in the

Swiss Market Index (SMI). 292 products are constructed with underlyings that belong

to the EuroStoxx 50 Index. We assign the remaining 141 product underlyings to the

category “Other”. As launching a product takes some time due to the design, planning,

and subscription period, we lag the matching variables by up to three weeks.

Finally, we compute the difference between the value of Higher Vola (Higher Div) of

the actually chosen underlying and the average value of Higher Vola (Higher Div) of the

matched underlyings. We perform one-sided t-test to analyze whether this difference is

significantly larger than zero. Our findings are presented in Table 9.

INSERT TABLE 9 NEAR HERE

In Column (1) we lag the matching variables by one week. The results show that

chosen underlyings have significantly more often Higher Vola and Higher Div dummies

equal to one than comparable available underlyings. Quantitatively, the differences imply

that the probability of having a higher implied than historical volatility is 2.3% larger

with chosen compared with available underlyings and that of having a higher expected

than historical dividend 6% larger. Thus, issuers design their products such that they

have a stronger informational advantage regarding volatility and dividends. As shown in

Columns (2) and (3), this result is also significant if we lag the matching variables by two

and three weeks.

6 Robustness

We conduct several robustness tests for our main results.

6.1 Product pricing

In Tables 10 and 11, we discuss alternative specifications of the main regressions in Tables

3 and 4. A potential concern with our results is that they are driven by issuers installing

higher IPs for certain product categories. A correlation of the unobserved heterogeneity
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on the product category level with at least one of the main explanatory variables could

bias our conclusions. The same problem arises if certain issuers tend to require higher

IPs than others. Thus, we rerun the regressions with product category and issuer fixed

effects. Our results are robust to this alternative specifications, as shown in Column (1)

of both tables.

INSERT TABLE 10 NEAR HERE

INSERT TABLE 11 NEAR HERE

So far, we assume that the impact of volatility and dividend on the IP is linear. To

control for potential non-linear relations, we incorporate the square product of implied

volatility (Implied Volatility Squared) and IBES Dividend Yield (IBES Dividend Yield

Squared) into our regression model. Both Columns (2) show that our results remain

qualitatively unchanged.

Another potential concern with the volatility result is that the IP is driven by the

fact that retail investors demand a different volatility risk premium than institutional

investors. We inlcude VSMI which is an index based on implied volatilities of SMI

options across different maturities to control for time variation in risk premiums. The

results in Column (3) of Table 10 are robust to the inclusion of the VSMI.

A potential error in the calculation of Impl Vola could introduce a correlation between

the independent variable IP and the control variable Impl Vola or Higher Vola. The

reason is that some structured products entail options (used to calculate the IP via the

replication price) with maturity and strike that are close to those of the extracted control

variable Impl Vola. We address this endogeneity concern with the approach suggested

in Henderson and Pearson (2011). Specifically, we use the implied volatility of at-the-

money put options with a time to maturity of 182 trading days (Implied Volatility 182)

to define the controls Impl Vola and Higher Vola in our regressions. Whereas this implied

volatility should still proxy for future expected volatility, none of our structured products

is replicated with a 182 trading days at-the-money put option. Column (4) in Table 10

shows that our results are robust to this specification.

Next, we include a battery of additional control variables that potentially drive our

results. The degree of competition in the structured products market may affect issuers’

decision about the size of IPs. In a more competitive market, for example, competitors’

price decisions could exert pressure on an issuer’s premium. Thus, we incorporate the
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HH-Index as an additional control. HH-Index is the Herfindal-Hirshman-Index calculated

based on the market shares of issuers in the number of products at each date. A higher

value indicates a more monopolistic market.12

Structured products may also serve banks as medium-term funding source. Thus,

issuers’ funding needs can influence their product pricing and issuance behavior. We

control for funding needs with the quarterly ratio between deposit and total assets of

each issuer.

Because investors face the default risk of the issuer when investing in a structured

product, issuers may need to compensate investors for this risk (Arnold, Schuette, and

Wagner, 2016). As a consequence, the IP could depend on the issuer’s creditworthiness.

Thus, we incorporate the issuer’s interpolated CDS spread as a proxy for default risk.

The economic environment also influences the market conditions to issue structured

products. We include the values of the Economic Barometer published by the KOF Swiss

Economic Institute as a proxy for economic environment. The Economic Barometer is

based on the month-on-month growth rate of Switzerland’s GDP and aims to indicate

the Swiss business cycle.

We incorporate all four additional control variables in Column (5) of Table 10 and

Column (3) of Table 11. The main results are robust to the specification with the ad-

ditional controls. The negative and significant coefficient of CDS Spread indicates that

products of issuers with higher default risk exhibit lower IPs. The coefficient of HH-Index

is positive and significant in Table 11. Thus, in time periods with less competition, IPs

are on average larger. Both findings are in line with our expectations. The remaining

additional control variables are not statistically significant.

Another potential concern with our results is that the coefficients of our informa-

tional advantage measures are affected by cross-sectional heterogeneity of underlyings

and correlated standard errors within underlying clusters. To address this concern, we

also include underlying fixed effects and clustered standard errors at the underlying level

in Column (6) of Table 10 and Column (4) of Table 11. Our results are robust to this

specification.

12We also use the number of active products and banks as alternative proxies for competition. The
results are robust to these alternatives.
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6.2 Regression discontinuity design

Our RD results are robust to alternative methodologies and specifications.

As structured products entail derivative components, their return is not linearly re-

lated to the underlying. Therefore, we rerun the regression model 3 by including the

quadratic term of Return Underlying and its interaction with Product Category. The

jump at the threshold remains statistically significant.

Following the suggestion of Imbens and Lemieux (2008), we also investigate the sen-

sitivity of our results to the bandwidths choice. Thus, we repeat the RD analysis by

considering multiples of the originally chosen bandwidths. The magnitude of the discon-

tinuity coefficient declines but remains statistically significant. For example, if we double

(triple) the number of observations on both sides of the threshold, the coefficient is equal

to 9.77% (4.92%). As expected, statistical significance disappears for larger bandwidths

because just–before products with a large distance of their ex-dividend date to the matu-

rity date become just–after products in terms of the previous ex-dividend date (and vice

versa).

We also implement the RD design based on bias-corrected RD estimators and robust

standard errors as suggested by Calonico, Cattaneo, and Titiunik (2014). In this ap-

proach, we use a triangular kernel function to construct the local-polynomial estimator.

Our results are robust to this alternative methodology (not reported).

7 Conclusion

We present evidence that the pricing and design of structured products are driven by the

degree of the informational advantage of the issuer over retail investors. In particular,

we show that products with a volatility information advantage for issuers have an issue

premium which is approximately 30% larger than without this advantage, and products

with a dividend information advantage for issuers have a 40% larger premium. Consis-

tent with the hypothesis that issuers exploit their informational advantage, our results are

stronger for products with a higher value sensitivity to the corresponding information and

a larger portion of less sophisticated investors. The explanatory power of informational

advantage proxies is important statistically and economically, whereas standard proxies

for the production cost of structured products, the market environment, or liquidity are

mostly insignificant. We also show that banks do not only exploit uninformed investors
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through the pricing of structured products, but even design products towards features of

which investors are insufficiently informed. The structuring result is of systemic stabil-

ity concern because it suggests that financial engineers actively contribute to imperfect

information in the financial system.

There is a vivid ongoing debate on the caveats of financial innovation such as product

complexity and investor sophistication (e.g., Carlin, 2009; Zingales, 2015; Célérier and

Vallée, forthcoming). We contribute to this discussion with evidence that unequal access

to information is an additional important caveat of financial innovations. Our results

imply that the current product disclosure policy is insufficient to prevent financial en-

gineers from exploiting their informational advantage over investors. The Dodd-Frank

Act, for instance, only broadly suggests that adequate information should be given to

investors. Hence, information exploitation appears to have largely escaped regulators in

charge of investor protection. As a lack of investor information about financially engi-

neered products causes market fragility (Rajan, 2006; Gorton and Metrick, 2012; Stein,

2012; Gennaioli, Shleifer, and Vishny, 2012), desirable regulatory policies should aim at

mitigating this gap. By identifying the specific channels through which financial engineers

exploit their informational advantage over investors, our study stimulates the discussion

on whether and how to reduce informational differences between investors and financial

engineers. Reducing this difference could mitigate issuers’ incentive to design products

for which investors have a large informational disadvantage and, thus, the concern that

financial innovations undermine market stability. The content and exact form of informa-

tion provisions seem fruitful directions for future research. For example, recent implied

volatility estimations or predicted future dividends could be made available to investors of

financially engineered securities. Such disclosure policies are an alternative to restricting

the issuance of products to well informed and qualified investors.
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Appendix: Replication prices

Each structured product is replicated by using fixed income and option components.

Discount Certificates (DC) are replicated as

DC =
M

exp(rT )
− P (S − PV (D),M, T, σP ), (6)

in which M is the redemption amount of the bond component, r the interest rate, T

the time to maturity of the product, and P (S − PV (D),M, T, σP ) a put option on the

underlying of the product strike M and time to maturity T . We adjust the spot price

S by subtracting PV (D) that is the present value of all dividend payments predicted by

IBES to occur during the lifetime of a product. σP is the implied volatility of the put

option with corresponding strike and maturity.

We replicate a Barrier Discount Certificate (BDC) as

BDC =
M

exp(rT )
+ C(S − PV (D), Y, T, σC)−DIP (S − PV (D), X,B, T, σDIP ), (7)

in which M is the redemption value of the bond component, r the interest rate, T the

time to maturity of the product, C(S−PV (D), Y, T, σC) a call option on the underlying

of the product with strike Y , time to maturity T and implied volatility σC , and DIP (S−
PV (D), X,B, T ) a down and in put option on the underlying of the product with strike

X, barrier level B, time to maturity T and implied volatility σDIP .

Reverse Convertibles (RC) are replicated by

RC =
N

exp(rT )
+

∑
ti≤T

cti
exp(rti)

− αP (S − PV (D), X, T, σP ), (8)

in which N denotes the nominal amount, ti the coupon payment dates, cti the coupon

payments at time ti, and P (S − PV (D), X, T, σP ) a put option on the underlying of the

product with strike X, time to maturity T and implied volatility σP . α = N/X reflects

the number of put options contained in the nominal amount of a certificate.
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We replicate Capped Outperformance Certificates (COC) as

COC =
M

exp(rT )
− P (S − PV (D),M, T, σP )+

(α− 1)C(S, Y, T, σC1)− (α− 1)C(S − PV (D),M, T, σC2),

(9)

in whichM is the redemption amount of the bond component, Y the lower threshold of the

underlying above which the investor disproportionately participates in the performance of

the underlying, α the total participation rate between Y and M , C(S−PV (D), Y, T, σC1)

a call option with strike Y , time to maturity T and implied volatility σC1. C(M,T ) is a

call option with strike M .

Barrier Reverse Convertibles (BRC) are replicated by

BRC =
N

exp(rT )
+

∑
ti≤T

cti
exp(rti)

− αDIP (S − PV (D), X,B, T, σDIP ), (10)

in which α is the number of put options contained in the nominal amount of a certificate,

calculated as α = N/X, and DIP (S − PV (D), X,B, T, σDIP ) a down and in put option

on the underlying of the product with strike X, barrier B, time to maturity T and implied

volatility σDIP .

Finally, we construct Bonus Certificates (BC) with

BC =
M

exp(rT )
+ C(S − PV (D),M, T, σC)−

P (S − PV (D),M, T, σP ) + αDOP (S − PV (D),M,B, T, σDOP ),

(11)

in which M is the redemption amount of the bond components, α the total participation

rate, and DOP (S−PV (D), X,B, T, σDOP ) a down and out put option on the underlying

of the product with strike M , barrier B, time to maturity T and implied volatility σDOP .

We obtain the option components in a replication price by transforming traded (Amer-

ican) EUREX option prices to the (European) option prices of the structured product.

For an accurate transformation, we need the expected dividend and implied volatility

of the underlying, as well as the pricing parameters provided in the term sheet of each

product at the initial fixing date.

We collect consensus dividend forecasts from IBES. For each product, we use the IBES

database’s latest mean expected dividend entry prior to the initial fixing date to forecast
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the dividend amount paid during a product’s lifetime. We obtain expected ex-dividend

dates by projecting historical ex-dividend dates within a year prior to the initial fixing

of a product into the future. Using discrete dividends in our analysis is important to

investigate the dependence of structured products’ performance on the relation between

product maturity and ex-dividend dates.

We extract implied volatilities from traded EUREX options. For each option con-

tained in a structured product, we identify four corresponding EUREX options: One

with the closest lower strike price and closest longer maturity, the closest lower strike

price and closest shorter maturity, the closest higher strike price and closest longer matu-

rity, and the closest higher strike price and closest shorter maturity. If we do not find all

four options, we use the EUREX option that most closely matches the maturity and the

strike price of a product’s implicit option (e.g. Henderson and Pearson (2011)). As EU-

REX options are of American type, we extract each implied volatility by using a binomial

tree model based on Cox, Ross, and Rubinstein (1979). We apply a daily discretization

for the tree with p = (er(1/360) − d)/(u − d), q = 1 − p, u = eσ
√

(1/360), and d = 1/u, in

which p (q) is the probability of an increase (decrease), and u (d) is the discrete factor

for an increase (decrease) in the stock price. We incorporate the discrete dividend pay-

ments in the binomial tree. We obtain the implied volatility of an option by extracting

the volatility in the tree that equates the tree’s option price with the observed EUREX

option settlement price. Subsequently, we bilinearly interpolate the implied volatilities

of the four corresponding EUREX options based on their distance to the strike and the

time to maturity of the option contained in the structured product.

For the interest rate, r, we follow the literature by using interpolated London In-

terbank Offered Rates (LIBOR) in the currency of the structured product for different

maturities (Henderson and Pearson, 2011). For maturities beyond twelve months, we

apply the corresponding swap rates. As the maturity of a structured product hardly

ever matches the maturity of publicly available LIBOR rates exactly, we linearly inter-

polate for each product the LIBOR rates with the closest longer and the closest shorter

maturities to obtain an estimation for the appropriate interest rate.

Because structured products in our sample entail only options of European type,

we apply the Black-Scholes formula to price the plain vanilla options contained in a

product. Barrier options are calculated by using the formula of Hull (2009) for knock-in

and knock-out options. We incorporate the estimated dividends, implied volatility, and
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interest rate. The stock price relevant to calculate the replication price of structured

products is S − PV (D), in which S is the market price of the underlying at the initial

fixing date and PV (D) is the present value of the dividend payments that are expected

to occur during a product’s lifetime
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Table 1
Overview of Structured Products Sample

This table presents the number of structured products in our sample grouped by issuer, product
category, and year. Our starting point is a term sheets database containing all structured equity
products issued in Switzerland between January 2005 and December 2010. We collect data on
products issued in Switzerland on a single equity underlying.

Number of Issued Products

Panel A: By Issuer

UBS 550
Goldman Sachs 144
Credit Suisse 136
Royal Bank of Scotland 134
Deutsche Bank 29
Merrill Lynch 11
J.P. Morgan 8

Panel B: By Product Category

Discount Certificate 358
Barrier Reverse Convertible 295
Bonus Certificate 188
Reverse Convertible 97
Capped Outperformance Certificate 54
Barrier Discount Certificate 20

Panel C: By Year

2005 73
2006 165
2007 249
2008 272
2009 178
2010 75
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Table 2
Descriptive Statistics

This table presents descriptive statistics for our sample of structured products issued in Switzerland
between January 2005 and December 2010. We collect data on products on a single equity underly-
ing. Issue Premium (IP) is the issue price of a structured product minus its replication value, scaled
by the issue price, expressed in percentage points. ImplVola is the annualized implied volatility of
the product’s option on the underlying calculated for the lifetime of the product. We calculate Hist
Vola as the standard deviation of a product underlying’s returns over the 255 trading days before
the initial fixing date. IBES Div Yield is the ratio between the present value of expected dividend
payments based on IBES forecasts that occur during the lifetime of a product and the stock price
of the underlying at the initial fixing date. We define Hist Dividend Yield as the ratio between the
present value of the expected dividend payments based on historical dividend payment patterns and
the stock price of the underlying at the initial fixing date. Market Cap Underlying is the natural
logarithm of the market value of equity of the underlying (in USDbn). 3m and 12m Excess Return
Underlying are the 3 and 12 months continuous annual returns of the underlying in excess of the 3
and 12 months continuous annual returns of the Swiss Market Index (SMI), respectively. 1m and
3m Turnover Underlying are defined as the natural logarithm of the dollar value (in USDm) of the
cumulated trading volume of the underlying over one month and three month prior to the issuance,
respectively. We calculate 1m Call Volume and 1m Put Volume as the cumulated trading volume
of EUREX call (put) options written on the underlying over one month preceding the initial fixing
date divided by the volume of call (put) options written on all underlyings during the same time
period. Vega (Delta) is the product’s annualized Vega (Delta) scaled by its issue price. Average
Trading Size is the logarithm of the average trading size in USD on the secondary market. Features
is defined as the number of different features contained in a product whereas each strike, barrier,
or the presence of coupon payments adds one additional feature to a structured product. We cal-
culate Implied Volatility Squared as the square product of Impl Vola, Implied Volatility 182 as the
annualized implied volatility of an at-the-money put option with a maturity of 182 days on the
product’s underlying and IBES Div Yield Squared as the square product of IBES Div Yield. Time
to Maturity is defined as the number of business days between the initial fixing date and maturity
date of a structured product.

N Mean Std.
Dev.

Q25 Median Q75

Issue Premium 1012 1.48 2.09 0.52 1.35 2.24
Impl Vola 1012 28.67 11.26 21.27 26.18 33.95
Hist Vola 1012 31.24 18.59 18.85 24.40 36.69
IBES Div Yield 1012 0.03 0.02 0.01 0.03 0.04
Hist Div Yield 1012 0.04 0.06 0.01 0.02 0.04
Market Cap Underlying 1012 3.80 1.09 3.26 4.08 4.70
3m Excess Return Underlying (x100) 1012 1.46 11.09 -5.26 1.35 8.44
12m Excess Return Underlying (x100) 1012 0.87 21.26 -11.48 0.18 12.75
1m Turnover Underlying 1012 7.45 1.92 6.15 8.21 8.98
3m Turnover Underlying 1012 8.55 1.91 7.24 9.27 10.06
1m Call Option Volume 1012 2.63 3.79 0.31 1.66 3.13
1m Put Option Volume 1012 2.55 3.41 0.33 1.66 3.27
Vega 1012 -0.46 0.29 -0.49 -0.43 -0.39
Delta 1012 0.02 0.18 0.01 0.01 0.02
Average Trading Size (in USD 1000) 783 10.71 1.15 9.98 10.68 11.33
Features 1012 2.18 0.92 1.00 3.00 3.00
Implied Volatility Squared 1012 9.49 8.40 4.52 6.85 11.52
Implied Volatility 182 994 31.19 14.73 21.65 28.32 37.46
IBES Div Yield Squared (x100) 1012 0.12 0.17 0.01 0.06 0.15
Time to Maturity (trading days) 1012 294.16 150.80 249 255 265



Table 3
OLS Regressions of the Issue Premiums for Volatility Measures

This table presents results of OLS regressions. The dependent variable is the Issue Premium (IP),
which is the issue price of a structured product minus its replication value, scaled by the issue
price, expressed in percentage points. Impl Vola is the annualized implied volatility of the product’s
option on the underlying calculated for the lifetime of the product. We calculate Hist Vola as the
standard deviation of a product underlying’s returns over the 255 trading days before the initial
fixing date. Higher Vola is a binary variable that is equal to one if Impl Vola is larger than Hist
Vola, and zero otherwise. Vega is defined as the product’s annualized Vega scaled by its issue price.
Average Trading Size is calculated as the logarithm of the average trading size in USD on the
secondary market. Features is defined as the number of different features contained in a product
whereas each strike, barrier, or the presence of coupon payments adds one additional feature to a
structured product. The standard controls are defined in Table 2. We control for year fixed effects.
t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1%
level, respectively.

(1) (2) (3) (4) (5) (6)
VARIABLES IP IP IP IP IP IP

Impl Vola 4.879*** 8.372*** 1.272*** 8.275*** 7.063*** 9.389***
(6.41) (7.40) (10.42) (7.37) (6.38) (8.68)

Hist Vola -4.440*** -0.894*** -4.678*** -2.551*** -6.147***
(-5.07) (-5.79) (-5.37) (-2.98) (-7.23)

Higher Vola 0.542*** 0.091 3.074*** 0.479***
(3.22) (0.34) (2.67) (2.99)

Impl Vola × Hist Vola -0.196***
(-3.15)

Vega 1.142***
(4.30)

Higher Vola × Vega -0.803*
(-1.86)

Average Trading Size 0.001
(0.02)

Higher Vola × Average Trading Size -0.230**
(-2.14)

Features 0.728***
(10.29)

Market Cap Underlying 0.164** 0.105 0.186** 0.097 0.096 -0.042
(2.24) (1.47) (2.49) (1.36) (1.36) (-0.60)

3m Excess Return Underlying 0.793 1.522** 1.829*** 1.662*** -0.003 1.616***
(1.29) (2.52) (2.99) (2.77) (-0.01) (2.82)

12m Excess Return Underlying -0.432 -0.565* -1.045*** -0.546* -0.159 -0.446
(-1.34) (-1.81) (-3.06) (-1.76) (-0.49) (-1.50)

1m Turnover Underlying 0.185 -0.119 0.009 -0.111 0.322 -0.309
(0.64) (-0.42) (0.03) (-0.40) (1.16) (-1.15)

3m Turnover Underlying -0.221 0.101 -0.025 0.099 -0.315 0.313
(-0.76) (0.36) (-0.09) (0.35) (-1.12) (1.16)

1m Call Option Volume -1.673 0.069 -0.955 0.337 -1.470 1.113
(-0.49) (0.02) (-0.29) (0.10) (-0.34) (0.35)

1m PutOption Volume 3.754 3.184 3.301 2.721 5.250 1.013
(0.98) (0.86) (0.89) (0.74) (1.16) (0.29)

Constant 0.020 1.047** -0.650 1.220** -0.682 -0.983
(0.04) (2.15) (-1.23) (2.08) (-1.32) (-1.60)

Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 1,012 1,012 1,012 1,012 783 1,012
R-squared 0.133 0.188 0.187 0.203 0.157 0.266
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Table 4
OLS Regressions of the Issue Premiums for Dividend Measures

This table presents results of OLS regressions. The dependent variable is the Issue Premium (IP),
which is the issue price of a structured product minus its replication value, scaled by the issue price,
expressed in percentage points. IBES Div Yield is the ratio between the present value of expected
dividend payments based on IBES forecasts that occur during the lifetime of a product and the stock
price of the underlying at the initial fixing date. We define Hist Dividend Yield as the ratio between
the present value of the expected dividend payments based on historical dividend payment patterns
and the stock price of the underlying at the initial fixing date. Higher Div is a binary variable that is
equal to one if IBES Dividend Yield is larger than Hist Dividend Yield, and zero otherwise. Delta is
defined as the product’s annualized Delta scaled by its issue price. Average Trading Size is calculated
as the logarithm of the average trading size in USD on the secondary market. Features is defined as
the number of different features contained in a product whereas each strike, barrier, or the presence
of coupon payments adds one additional feature to a structured product. The standard controls are
defined in Table 2. We control for year fixed effects. t-statistics are reported in parentheses. ∗, ∗∗,
and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6)
VARIABLES IP IP IP IP IP IP

IBES Div Yield 6.751** 3.009 0.218** 2.261 -5.244 2.258
(2.14) (0.82) (2.10) (0.61) (-1.41) (0.63)

Hist Div Yield -2.723* 0.006 -4.438*** -1.335 -1.335
(-2.58) (0.06) (-1.71) (-1.34) (-1.23)

Higher Div 0.616*** 0.279 3.287*** 0.581***
(3.78) (1.51) (2.76) (3.66)

IBES Div Yield × Hist Div Yield -0.112**
(-2.23)

Delta -20.852***
(-4.15)

Higher Div× Delta 24.161***
(3.57)

Average Trading Size 0.076
(0.85)

Higher Div×Average Trading Size -0.254**
(-2.30)

Features 0.542***
(7.36)

Impl Vola 5.260*** 6.053*** 5.677*** 6.365*** 5.859*** 5.468***
(6.74) (7.76) (7.29) (8.18) (7.73) (7.15)

Market Cap Underlying 0.145* 0.103 0.137* 0.107 0.113 0.005
(1.96) (1.40) (1.87) (1.47) (1.56) (0.06)

3m Excess Return Underlying 0.785 0.690 0.653 0.578 -0.432 0.696
(1.28) (1.14) (1.07) (0.96) (-0.69) (1.18)

12m Excess Return Underlying -0.319 -0.465 -0.411 -0.489 -0.199 -0.306
(-0.98) (-1.45) (-1.27) (-1.53) (-0.61) (-0.97)

1m Turnover Underlying 0.218 0.208 0.240 0.239 0.514* 0.095
(0.76) (0.74) (0.85) (0.85) (1.85) (0.34)

3m Turnover Underlying -0.249 -0.227 -0.264 -0.251 -0.508* -0.102
(-0.86) (-0.80) (-0.92) (-0.89) (-1.80) (-0.37)

1m Call Option Volume -1.120 -0.559 -0.905 -1.098 -4.007 -0.141
(-0.33) (-0.17) (-0.27) (-0.33) (-0.91) (-0.04)

1m Put Option Volume 2.765 1.613 1.961 2.303 6.434 0.383
(0.72) (0.43) (0.51) (0.61) (1.40) (0.10)

Constant -0.106 -0.502 0.211 -0.306 -1.032 -1.095**
(-0.20) (-0.95) (0.40) (-0.58) (-0.92) (-2.10)

Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 1,012 1,012 1,012 1,012 783 1,012
R-squared 0.137 0.166 0.157 0.180 0.135 0.209

41



Table 5
OLS Regression of the Unexplained Performance

This table presents results using an OLS regression. The dependent variable is the Product Perfor-
mance, which is the annualized performance of a structured product calculated as the return of the
final payoff over the issue price. Underlying Return is the annualized total return of the underlying
of a product multiplied by delta. We use Product Category fixed effects and the interaction be-
tween them and Underlying Return. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% level, respectively.

(1)
VARIABLES Return Product

Underlying Return 0.879***
(9.35)

Product Category Fixed Effects Yes
Product Category Fixed Effects Interaction Yes

Observations 1012
R-squared 0.900

Table 6
Fuzzy RD Design: First-Stage Regression

This table presents the first-stage regression from a Fuzzy RD Design. The dependent variable is
ExPost, a dummy that is equal to one if the actual (ex-post) dividend payment date closest to
the maturity date occured after product maturity, and zero otherwise. Days is calculated as the
difference between the estimated ex-dividend date closest to the maturity date and the maturity date
measured in days. ExAnte is a dummy equal to one if the estimated ex-dividend date closest to the
maturity date occured after product maturity, and zero otherwise. We apply optimal bandwidths
based on the rule-of-thumb approach. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% level, respectively.

(1)
VARIABLES Ex-Post

Days 0.001
(0.12)

Ex Ante 0.688***
(5.77)

Days x Ex Ante 0.005
(0.43)

Observations 137
R-squared 0.554
F 57.40
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Table 7
Fuzzy RD Design: Second-Stage Regression

This table presents results of the Fuzzy RD Design using a two-stage least-squares approach with
local polynomials of order one. First, we use dividend payment dates projections to instrument the
actual ex-post outcome based on Eqn. (4). Second, we use the fitted values from the first-stage
regression as an instrument in Eqn. (5). The dependent variable is the unexplained performance
measure (UP), which is defined as the residuals of the model estimated with Eqn(3). We apply
optimal bandwidths based on the rule-of-thumb approach. We report the coefficients of discontinuity
α2 estimated in Eqn. (5) for thresholds at different cut-offs in a time window of six weeks around day
0. The thresholds are defined as the differences between the estimated ex-dividend date closest to
the maturity date and the maturity date measured in days. t-statistics are reported in parentheses.
∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively.

-15 -14 -13 -12 -11 -10 -9 -8

α2 -0.099 -0.010 0.010 0.015 -0.014 0.047 0.081 -0.021
(-0.56) (-0.13) (0.21) (0.35) (-0.30) (0.55) (1.14) (-0.31)

N 163 161 163 160 157 149 149 151

-7 -6 -5 -4 -3 -2 -1 0

α2 -0.014 -0.031 0.200 0.072 0.225 0.108* 0.097** 0.101**
(-0.29) (-0.49) (1.00) (0.67) (1.53) (1.68) (1.99) (2.18)

N 149 149 140 139 136 142 141 137

1 2 3 4 5 6 7 8

α2 0.086 0.077 -0.158 -0.094 -0.011 -0.159* -0.197 -0.158
(1.29) (0.99) (-1.30) (-0.60) (-0.11) (-1.67) (-1.60) (-1.16)

N 136 132 131 122 116 118 118 118

9 10 11 12 13 14 15

α2 -0.168 -0.148 -0.063 -0.047 0.091 0.119 0.190
(-1.47) (-1.37) (-0.33) (-0.41) (0.78) (1.07) (1.65)

N 118 114 109 103 102 99 93
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Table 8
Validity Test: Control

This table presents the RD design validity test for observable control variables using a two-stage
least-squares approach with local polynomials of order one. The standard controls are defined in
Table 4. Underlying Return is the annualized total return of the underlying. Deviation is defined
as the absolute distance between the time to maturity of a structured product and its closest
standardized time to maturity (0.5, 1, 1.5, 2 or 3 years) in years. We apply optimal bandwidths
based on the rule-of-thumb approach. We report the coefficients of discontinuity α2 estimated in
Eqn. (5). t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%,
and 1% level, respectively.

IBES Div Yield Hist Div Yield Higher Div Delta

α2 0.011 0.050 -0.085 0.017*
(0.92) (1.12) (-0.32) (1.70)

N 137 137 137 137

Average Trading
Size

Features Impl Vola Market Cap
Underlying

α2 0.181 -0.648 -0.062 0.506
(0.27) (-1.42) (-1.12) (0.93)

N 99 137 137 137

3m Excess Return
Underlying

12m Excess
Return Underlying

1m Turnover
Underlying

3m Turnover
Underlying

α2 -0.078 -0.084 0.040 -0.006
(-1.41) (-0.63) (0.05) (-0.01)

N 137 137 137 137

1m Call Option
Volume

1m Put Option
Volume

Underlying Return Deviation

α2 0.006 0.006 -0.035 0.037
(0.36) (0.35) (-0.19) (1.01)

N 137 137 137 137

44



Table 9
Nearest Neighbor Matching

This table presents results of the Nearest Neighbor matching approach. For each underlying that
is actually chosen for a structured product, five non-chosen underlyings that are closest neighbors
with respect to the Mahalanobis distance are selected. The matching variables are the index and
industry of an underlying, the underlying’s market capitalization, the three and twelve months excess
returns, the one month and three months cumulated trading volumes as well as the one month call
(put) volume written on the underlying. Depending on the specification of the model, the matching
variables are lagged by one, two and three weeks. We define Industry as the two-digit SIC code.
Higher Vola (Higher Div) is a binary variable that is equal to one if Impl Vola (IBES Dividend
Yield) is larger than Hist Vola (Hist Dividend Yield), and zero otherwise. Mean Difference Higher
Vola (Mean Difference Higher Div) is calculated as the difference between the value of Higher Vola
(Higher Div) of the underlying that is actually chosen and the mean value of Higher Vola (Higher
Div) of the matched underlyings. We calculate Impl Vola as the annualized implied volatility of
the product’s option on the underlying calculated for the lifetime of the product. IBES Div Yield
is the ratio between the present value of expected dividend payments based on IBES forecasts that
occur during the lifetime of a product and the stock price of the underlying at the initial fixing date.
Corresponding Index is the index of the underlying. The standard controls are defined in Table 2.
p-values of the one-sided t-test are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote significance at the
10%, 5%, and 1% level, respectively.

(1) (2) (3)

Corresponding Index Yes Yes Yes
Industry Yes Yes Yes
Market Cap Underlying Yes Yes Yes
3m Excess Return Underlying Yes Yes Yes
12m Excess Return Underlying Yes Yes Yes
1m Turnover Underlying Yes Yes Yes
3m Turnover Underlying Yes Yes Yes
1m Call Option Volume Yes Yes Yes
1m Put Option Volume Yes Yes Yes

Lag 1 Week 2 Weeks 3 Weeks

Mean Difference Higher Vola 0.023** 0.020* 0.022**
(0.04) (0.06) (0.05)

Mean Difference Higher Div 0.060*** 0.058*** 0.062***
(0.00) (0.00) (0.00)
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Table 10
Robustness Tests: Volatility Measures

This table presents various robustness tests for our main findings. The dependent variable is the
Issue Premium (IP), which is the issue price of a structured product minus its replication value,
scaled by the issue price, expressed in percentage points. Higher Vola is a binary variable that is
equal to one if Impl Vola is larger than Hist Vola, and zero otherwise. Implied Volatility Squared
is calculated as the square product of Impl Vola. Implied Volatility 182 is the annualized implied
volatility of an at-the-money put option on the product’s underlying with a maturity of 182 days.
HH-Index is defined as the Herfindal-Hirshman-Index calculated based on the market shares of the
firms in the number of products on the initial fixing date. We calculate Funding Needs as the
quarterly ratio between deposit and total assets. CDS Spread is the CDS Spread of the issuer at the
initial fixing date. We use the Economic Barometer published by the KOF Swiss Economic Institute
as a proxy for Economic Environment. The standard controls are defined in Table 2. We control for
year fixed effects. Depending on the specification of the model, we additionally control for product
category, issuer and underlying fixed effects. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗

denote significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6)
VARIABLES IP IP IP IP IP IP

Impl Vola 9.980*** 23.525*** 12.192*** 12.018*** 7.914***
(9.79) (7.72) (9.46) (9.28) (3.76)

Hist Vola -4.947*** -5.022*** -6.363*** 0.030 -5.153*** -5.861***
(-6.17) (-5.76) (-6.90) (0.04) (-5.51) (-5.01)

Higher Vola 0.646*** 0.382** 0.594*** 0.764*** 0.427*
(4.31) (2.26) (3.58) (3.71) (1.88)

Implied Volatility Squared -19.159***
(-5.35)

VSMI -0.078***
(-5.88)

Implied Volatility 182 -0.473
(-0.64)

Higher Vola 182 0.715***
(3.85)

HH-Index 7.406***
(2.82)

Funding Needs -1.711
(-0.81)

CDS Spread -0.705***
(-3.63)

Economic Environment 0.008
(0.68)

Market Cap Underlying -0.044 0.173** 0.090 -0.028 0.110 0.030
(-0.68) (2.42) (1.28) (-0.37) (1.62) (0.06)

3m Excess Return Underlying 1.630*** 1.820*** 1.647*** 1.227* 1.676*** 1.068
(3.07) (3.05) (2.77) (1.88) (2.77) (1.02)

12m Excess Return Underlying -0.444 -1.242*** -0.577* -0.783** -0.696** -0.602
(-1.61) (-3.72) (-1.88) (-2.37) (-2.20) (-1.25)

1m Turnover Underlying -0.124 -0.150 -0.046 0.093 -0.035 -0.198
(-0.49) (-0.54) (-0.17) (0.32) (-0.13) (-0.56)

3m Turnover Underlying 0.124 0.144 0.061 -0.111 0.022 0.145
(0.49) (0.51) (0.22) (-0.37) (0.08) (0.30)

1m CallOptionVolume -0.202 1.490 -1.239 1.779 -7.036* 2.500
(-0.07) (0.46) (-0.38) (0.51) (-1.66) (1.31)

1m PutOptionVolume -1.429 0.920 4.533 1.309 4.079 1.209
(-0.43) (0.25) (1.24) (0.34) (0.91) (0.24)

Constant 0.180 -2.917*** -0.312 0.946* -2.905** 1.957
(0.28) (-4.33) (-0.59) (1.79) (-2.04) (0.80)

Year fixed effects Yes Yes Yes Yes Yes Yes
Product Category fixed effects Yes No No No No No
Issuer fixed effects Yes No No No No No
Underlying fixed effects No No No No No Yes
Observations 1,012 1,012 1,012 994 857 1,012
R-squared 0.384 0.210 0.202 0.114 0.236 0.310



Table 11
Robustness Tests: Dividend Measures

This table presents various robustness tests for our main findings. The dependent variable is the
Issue Premium (IP), which is the issue price of a structured product minus its replication value,
scaled by the issue price, expressed in percentage points. Higher Div is a binary variable that is
equal to one if IBES Dividend Yield is larger than Hist Dividend Yield, and zero otherwise. IBES
Div Yield Squared is calculated as the square product of IBES Dividend Yield. HH-Index is the
Herfindal-Hirshman-Index calculated based on the market shares of the firms in the number of
products on the initial fixing date. We calculate Funding Needs as the quarterly ratio between
deposit and total assets. CDS Spread is the CDS Spread of the issuer at the initial fixing date.
We use the Economic Barometer published by the KOF Swiss Economic Institute as a proxy for
Economic Environment. The standard controls are defined in Table 2. We control for year fixed
effects. Depending on the specification of the model, we additionally control for product category,
issuer and underlying fixed effects. t-statistics are reported in parentheses. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)
VARIABLES IP IP IP IP

Impl Vola 6.611*** 6.034*** 8.136*** 7.155***
(8.90) (7.69) (9.34) (4.57)

IBES Div Yield 0.167 0.892 2.627 9.840
(0.05) (0.10) (0.70) (1.63)

Hist Div Yield -1.109 -2.830** -2.182** -2.647**
(-1.08) (-2.57) (-2.09) (-3.02)

Higher Div 0.285* 0.628*** 0.406** 0.612***
(1.89) (3.68) (2.54) (2.93)

IBES Div Yield Squared 27.490
(0.25)

HH-Index 3.659
(1.33)

Funding Needs -3.045
(-1.38)

CDS Spread -0.598***
(-2.93)

Economic Environment -0.005
(-0.41)

Market Cap Underlying 0.027 0.106 0.143** 0.704
(0.39) (1.42) (1.99) (1.19)

3m Excess Return Underlying 0.828 0.684 0.806 0.096
(1.50) (1.12) (1.28) (0.10)

12m Excess Return Underlying -0.374 -0.461 -0.412 -0.498
(-1.27) (-1.43) (-1.25) (-1.31)

1m Turnover Underlying 0.199 0.211 0.387 0.200
(0.77) (0.75) (1.33) 0.57)

3m Turnover Underlying -0.218 -0.230 -0.408 -0.350
(-0.83) (-0.81) (-1.40) (-0.70)

1m CallOptionVolume -2.429 -0.556 -9.334** 1.866
(-0.79) (-0.17) (-2.10) (0.83)

1m PutOptionVolume -0.106 1.574 5.097 5.013
(-0.03) (0.41) (1.09) (0.97)

Constant 0.561 -0.487 0.057 0.376
(0.84) (-0.92) (0.04) (0.14)

Year fixed effects Yes Yes Yes Yes
Product Category fixed effects Yes No No No
Issuer fixed effects Yes No No No
Underlying fixed effects No No No Yes
Observations 1,012 1,012 857 1,012
R-squared 0.325 0.166 0.161 0.294
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Figure 1
Unexplained Performance

This figure shows the distribution of the unexplained performance (UP) in a time window of [-19, 19] days around the
maturity date. The projected dividend payment date is defined as the difference between the expected ex-dividend date
and the maturity date in days. A negative (positive) value indicates that the ex-dividend date is expected to occur
before (after) the maturity date. UP is calculated as the residual of regression Eqn. (3). We fit a linear function on
either side of the threshold using binwidths of 5 and 10. Each bin represents the average of either 5 or 10 observations.
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Figure 2
Product Issuances throughout the Year

This figure depicts the number of products issued per month. Month number 1 is
January, number 2 is February and so forth.
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Figure 3
Time to Maturity

This figure shows the distribution of time to maturity in a time window of [-19, 19]
days around the maturity date. The projected dividend payment date is defined as
the difference between the expected ex-dividend date and the maturity date in days.
A negative (positive) value indicates that the ex-dividend date is expected to occur
before (after) the maturity date. The time of maturity is calculated in years. Solid
dots indicate products with a time to maturity of one year or shorter and hollow dots
products with a time to maturity of longer than one year.
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