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Abstract

This work analyzes if reference dependence and loss aversion can ex-
plain the puzzling low adoption rates of rainfall index insurance. We
present a model that predicts the impact of loss aversion on index insur-
ance demand to vary with different levels of insurance understanding.
Index insurance demand of farmers who are unaware of the loss-hedging
benefit that insurance provides decreases with loss aversion. In con-
trast, insurance demand of farmers who are aware of the loss-hedging
benefit increases with loss aversion. The model further predicts that
farmers who are unaware of the loss-hedging benefit will not demand
an even highly subsidized index insurance. Using data from a random-
ized controlled trial involving a sample of Indian farmers we provide
empirical support for our core conjecture that insurance understand-
ing mitigates the negative impact of loss aversion on index insurance
adoption.
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1 Introduction

The economies of most developing countries are highly dependent on agricul-
ture. The agricultural sector in Africa, for example, accounts for more than
50% of the total employment on the continent (Patt et al., 2010). Further-
more, this sector faces inherent weather risks (Hyman et al., 2008; Cooper
et al., 2008; Barrett and Santos, 2014; Hansen et al., 2018). Accordingly,
formal financial hedges that smooth agricultural income between periods
with good and bad weather conditions are regarded as a prerequisite for
sustainable economic growth. One particular type of formal financial hedge
offered in many developing countries is index insurance. Index rainfall insur-
ance underwrites an indemnity payment depending on the realized rainfall
at the farmer’s nearest weather station. The advantages are, first, a low
premium because of low administrative costs and, second, the absence of
moral hazard and adverse selection (Giné et al., 2008; Carter et al., 2014).
The main drawback of index insurance is that payouts are not perfectly cor-
related with farmer’s harvest loss. This lack of correlation is known as basis
risk. Basis risk is particularly pronounced if the weather stations are too far
away from farmer’s field (Würtenberger, 2017). Given the inherent riskiness
of farming, the low and stagnating take-up rates of about 20% are puzzling
and cannot be explained by standard expected utility models of insurance
demand (Hellmuth et al., 2009; Patt et al., 2010; Karlan et al., 2014).1

This paper takes a behavioral economics approach to explain the low
demand for index insurance. In particular, we incorporate two of the four
ingredients of Kahneman and Tversky’s (1979) Prospect Theory (hereafter
PT); namely, reference dependence and loss aversion.2 According to Bar-
beris (2013), it is often unclear how to define precisely what a subjective
gain or loss is. Therefore, the central challenge in the application of PT is
the choice of appropriate reference points. In our index insurance demand

1If the index insurance is offered at an actuarially fair price, the estimated take-up rates
range from 25% (Cole et al., 2013) to 11% (Karlan et al., 2014) and even 6.4% (Gaurav
et al., 2011). Take-up rates increase to about 35% if the insurance is offered at a price
equal to 50% of its actuarially fair value (Karlan et al., 2014; Mobarak and Rosenzweig,
2012). Previous research showing considerable welfare gains for farmers holding index
insurance contracts (Cole et al., 2017; Carter et al., 2016) makes these low rates even
more puzzling.

2According to Barberis (2013), PT consist of four aspects: reference dependence, loss
aversion, diminishing sensitivity and probability weighting.
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model we choose two reference points which we believe are reasonable choices
for two different types of farmers: naïve and insurance-literate farmers.

The purpose of insurance is to alleviate the impact of losses. Therefore,
the demand for insurance depends on how an individual assesses the benefit
of alleviating the impact of losses versus the cost of the insurance premium
(Brown and Finkelstein, 2008; Gottlieb and Mitchell, 2015). Additionally, it
is likely that this assessment depends on the level of insurance understand-
ing (Giné and Yang, 2009; Gaurav et al., 2011). Consistent with this view,
we distinguish between naïve farmers who do not understand how insur-
ance works and insurance-literate farmers who do. We assume that naïve
farmers are not aware of the loss-hedging benefit that index insurance pro-
vides. Instead, they regard index insurance as an uncertain investment that
is not related to the actual harvest loss. Thus, naïve farmers compare the
outcomes of the index insurance to not investing at all, which constitutes a
natural reference point for these farmers. This means if no loss occurs - and,
thus, no indemnity is paid out - the premium is perceived as a pure loss.
This view of ’insurance as investment’ rather than a loss-hedging device is
supported by Patt et al. (2009), who report that some farmers are upset
if the indemnity payment is less than the premium paid for the insurance.
In contrast, insurance-literate farmers are aware of the loss-hedging benefit
of index insurance. Accordingly, these farmers only expect an indemnity
payment in case of harvest loss. A natural reference point to model this
situation is coverage of a (perfect) insurance which, if a loss occurs, always
pays out. These two distinct reference points propose different influences of
loss aversion on index insurance demand. Our PT model predicts that in-
surance demand of naïve farmers is decreasing with loss aversion, whereas it
is increasing with loss aversion for insurance-literate farmers. Furthermore,
our model suggests that naïve farmers whose preferences are characterized
by median values of the PT parameters do not demand index insurance even
if it is highly subsidized.

We take the predictions of our model to the data, revisiting Cole et al.’s
(2013) evidence on index insurance demand of farmers in a rural region of In-
dia. Cole et al. (2013) randomly assigned an insurance education module to
a subsample of 350 out of 1,042 farmers. We utilize this treatment as an ex-
ogenous variation of farmers’ level of insurance understanding and, therefore,
awareness of the loss-hedging benefit that insurance provides. The dataset
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captures measures of insurance demand, information on financial social-
ization and information on the socio-economic background. Furthermore,
farmers were asked to choose among lotteries varying in risk and expected
return. Following Binswanger (1981), Cole et al. (2013) interpret lottery
choices as indicators of risk aversion. The payouts of the experimental choice
task are small relative to farmers’ real world income.3 Accordingly, lottery
choices are only suitable to elicit risk attitudes if farmers are assumed to
isolate the income from the choice task from lifetime income (Rabin, 2000).
We follow other experimental studies (Fehr and Goette, 2007; Gächter et al.,
2007) and assume that farmers integrate the experimental income with their
lifetime income. Imposing further strict assumptions we show that lottery
choices may also indicate loss aversion. We document substantial differences
in the impact of loss aversion on insurance demand between farmers in the
treatment and in the control group. Insurance demand of farmers in the
control group decreases with loss aversion. An increase in loss aversion by
one standard deviation decreases the likelihood to demand at least one in-
surance contract by between 2.6 and 3.5 percentage points. Given an overall
take-up rate of 30.2%, these effects are economically meaningful. The nega-
tive effect vanishes for farmers in the treatment group.4 Due to its specific
design, the education module positively affects the awareness of the loss-
hedging benefit that insurance provides. Furthermore, it is unlikely that the
insurance education treatment impacts the relationship between loss aver-
sion and insurance demand other than by increasing the overall awareness
of the loss-hedging benefit. Thus, our findings support our conjecture that
the impact of loss aversion on insurance demand varies systematically with
the level of product understanding.

Our paper contributes to three main strands of literature. First, we add
to the recent literature on the impact of economic preferences on the demand
for index insurance products. Clarke (2016) presents a rational demand
model that assumes imperfect correlation between insurance net transfer

3The payoffs of the choice task range between Rs. 0− 110 whereas farmers’ mean (me-
dian) yearly income is Rs. 57,991 (34,116). Thus, the maximum income from the choice
task amounts to 2.3% (= 12 ⋅ 110/57,991) of the average monthly income. Accordingly,
stakes are much smaller than in the high-stake decision task of Binswanger (1981) with
stakes amounting to a month’s average income.

4In some specifications, the effect turns positive and an increase in loss aversion by one
standard deviation increases the likelihood to demand at least one insurance contract by
between 2.2 and 3.7 percentage points.
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and farmers’ net loss (basis risk). This model only explains the observed
low insurance take-up of the most risk-averse farmers (Giné et al., 2008) as
a rational response to the risk of contract non-performance. In contrast to
Clarke (2016), we focus on loss instead of risk aversion.5 To the best of our
knowledge, the impact of loss aversion on index insurance demand has not
yet been analyzed. Thus, we add to this literature by highlighting the role
of loss aversion.

Second, we contribute to the research on the role of PT preferences in
insurance demand decisions. Most of the literature focuses on probability
weighting (Sydnor, 2010; Barseghyan et al., 2013) and neglects loss aver-
sion. Recent studies by Gottlieb and Mitchell (2015) and Hwang (2016)
include loss aversion and present similar models to ours and empirically find
a negative impact of narrow framing and loss aversion on the demand for
long-term care insurances in the US. To the best of our knowledge, we are
the first to analyze the impact of loss aversion on insurance demand within
a setting that includes a contract non-performance risk.

Third, we contribute to the literature on the role of loss aversion as well
as product understanding for technology adoption. Liu (2013) finds that loss
aversion is one of the main drivers for the sluggish adoption of a new and su-
perior crop among Chinese farmers. Emerick et al. (2016) find that adoption
of a new seed variety among farmers in rural Indian villages is increasing
with understanding of the product. The assumption that the decision to
adopt a familiar product might require a different reference point than the
decision to adopt an unfamiliar product seems tautological. However, to
the best of our knowledge, there is not extant research that combines loss
aversion and product understanding. We contribute to this literature by
documenting that product understanding mitigates the negative impact of
loss aversion on technology adoption.6

The remainder of this paper is organized as follows. Section 2 introduces
our behavioral index insurance demand model. Section 3 presents the data
and the empirical test of our core hypothesis. Section 4 discusses shortcom-
ings of the model and the empirical specification. Section 5 concludes.

5The scenario in which a farmer buys an insurance and still suffers a loss without
indemnity payment is a natural starting point to include loss aversion.

6Given the high level of loss aversion (Liu, 2013; Holden and Quiggin, 2017) accom-
panied by the low level of education in developing countries (Cole et al., 2013), we offer
meaningful new insights to explain the low technology adoption rates (Brick and Visser,
2015; Abay et al., 2017) in the developing world.
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2 Behavioral insurance demand model

We focus on a model with only four states of the world. A loss L occurs
with probability p. In a classical insurance setting the loss would trigger
an indemnity payment I. To account for the specific feature of an index
insurance, the basis risk, we assume that, given a loss, there is a probability
q1 > 0 that the insurance does not pay out the indemnity payment. We refer
to this state as the downside basis risk. Similarly, to include the upside basis
risk, we assume that, given no loss, there is a probability q2 > 0 that the
insurance does pay out the indemnity payment. Table 1 illustrates the four
states and the associated probabilities.

Table 1: Four state framework (probabilities)

Indemnity No Indemnity
Loss p(1 − q1) pq1

No Loss (1 − p)q2 (1 − p)(1 − q2)

We assume that the probabilities the insurance under- or overestimates
the actual loss are the same, i.e., pq1 = (1−p)q2.7 We denote these probabil-
ities by r. We label farmer’s initial wealth level with W and, finally, assume
that the premium Π is actuarially fair, i.e., Π = pI. Table 2 assigns labels
((1)− (4)) to the different states and summarizes the outcomes for a farmer
who does not demand and a farmer who does demand the insurance.

Table 2: Four state framework (probabilities and outcomes)

State
Loss No Loss

Indemnity No Indemnity Indemnity No Indemnity
(1) (2) (3) (4)

Probability p(1 − q1) r r (1 − p)(1 − q2)
Wealth, No Insurance W −L W −L W W

Wealth, Index Insurance W − pI −L + I W − pI −L W − pI + I W − pI

We assume that farmers do not obey asset integration. Instead, they
evaluate monetary outcomes in terms of gains and losses with respect to

7Under this assumption the probability that the index insurance pays out is p. Thus,
the index insurance indemnity payment is an unbiased approximation of the indemnity
payment of an insurance without the existence of basis risk. This assumption is supported
by the empirical findings of Clarke et al. (2012).
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some reference point. According to PT, farmers’ value function equals

v(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x −R)α , if x ≥ R
−λ(R − x)α , if x < R.

(1)

In the value function (1), R is the reference point, α the coefficient of di-
minishing marginal sensitivity for gains and losses and λ the coefficient of
loss aversion.8 The crucial issue within the application of PT is the choice
of an appropriate reference point. Wakker et al. (1997) and Sydnor (2010)
use initial wealth W as a reference point. However, the main problem with
this reference point is, as Sydnor (2010) argues, the fact that the decision
to demand insurance is then entirely determined in the loss domain. Thus,
initial wealth is a questionable choice.9 In many other applications of PT
in economics, the reference point is set as the status quo. In the index in-
surance context the status quo (= no coverage) is state dependent. It equals
either W or W −L. Consequently, a possibly reasonable choice of the refer-
ence point might be W − L for the state in which the loss L occurs and W
for the state in which no loss occurs. We refer to this reference point as ’No
Insurance Coverage’ and analyze the implications of its choice in Section
2.1.10 Several empirical findings suggest that the status quo might not nec-
essarily be an appropriate choice. Instead, it seems that individuals often
choose risk-free outcomes as the reference point (for a review see Schmidt
(2016)). Accordingly, Schmidt (2016) proposes full insurance coverage as
an alternative reference point. The index insurance setting is special in the
sense that, although a farmer is insured, he might, because of the basis risk,
still suffer from an unsecured loss. Thus, index insurance coverage is not a
risk-free outcome. Accordingly, we choose full coverage of a perfect insur-
ance that always pays out in the case of a loss but never pays out in case
of no loss as a second reference point. We refer to this reference point as

8For the sake of simplicity, we assume that the diminishing marginal sensitivity for
gains and losses are equal, i.e., α ≈ β. This assumption is supported by Tversky and
Kahneman (1992) who find a median value of αm = βm = 0.88.

9For a further discussion on this issue see Schmidt (2016).
10PT as proposed by Kahneman and Tversky (1979) assumes that the reference point

is a fixed value. Accordingly, our model is actually embedded in the so-called Third-
generation PT which is proposed by Schmidt et al. (2008) and allows endogenous and
state dependent reference points.
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’Perfect Insurance Coverage’ and analyze the implications of its choice in
Section 2.2.

2.1 No insurance coverage

We first analyze insurance demand with a state-dependent reference point
given by wealth without any insurance. Hence, the reference point equals
either W − L in the states (1) and (2) in which a loss occurs or W in the
states (3) and (4) in which no loss occurs. Therefore, if the subject does not
demand the insurance, there is neither a gain nor a loss in all four states. If
the farmer demands the insurance, there is a gain of −pI + I if the insurance
pays out (state (1) and (3)). Furthermore, there is a loss of the insurance
premium pI if the insurance does not pay out (state (2) and (4)). Table 3
presents a summary of the encoded outcomes and their probabilities.

Table 3: No insurace coverage as reference point

State
Loss No Loss

Indemnity No Indemnity Indemnity No Indemnity
(1) (2) (3) (4)

Probability p(1 − q1) r r (1 − p)(1 − q2)
Gains/Losses, No Insurance 0 0 0 0
Gains/Losses, Index Insurance (1 − p)I −pI (1 − p)I −pI

A farmer demands the insurance if the PT Value of demanding is at
least as large as the PT Value of not demanding. Neglecting probability
weighting, the condition that needs to be fulfilled equals11

−λ(1 − p)(pI)α + p((1 − p)I)α ≥ 0. (2)

From condition (2) we can observe that an increase in the loss aversion co-
efficient λ negatively impacts the likelihood to demand the index insurance.
Furthermore, the basis risk probability r is not included in the condition.
Hence, a possible in- or decrease in basis risk does not impact the insurance
demand decision. Both predictions hold independently of the value of α
and, thus, under risk neutrality, i.e., α = 1, as well as under risk aversion,
i.e., α < 1. The following proposition summarizes these predictions.

11Within our model set up we assume that the probability of upside and downside basis
risk are the same. Therefore p(1−q1)+r = p(1−q1)+pq1 = p. Similarly r+(1−p)(1−q2) = 1−p.
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Proposition 2.1. Given the reference point ’No Insurance Coverage’, insur-
ance demand is independent of basis risk and decreasing with loss aversion.

Rearranging of inequality (2) shows that a farmer only demands the
insurance, if

λ ≤ ( p

1 − p)
1−α

.

Accordingly, as also stated by Gottlieb and Mitchell (2015), scenarios in
which the probability that a loss occurs is smaller than 0.5, i.e., p < 0.5,
require the loss aversion parameter to be smaller than 1, i.e., λ < 1. This
implies that losses do not loom larger than gains and therefore contradicts
one of the most tested assumptions of PT. Furthermore, using the median
PT parameter αm = 0.88 and λm = 2.25 shows that a loss probability of
p > 0.99 is required such that a farmer demands the insurance.12 Thus, it is
very likely that farmers using the reference point ’No Insurance Coverage’
never demand an actuarially fair priced insurance.13 We further analyze
insurance demand if the premium is lower than its actuarially fair value.
We denote s > 0 as the subsidy factor and assume that Π = (1 − s)pI holds.
Proposition 2.2 states subsidy requirements.

Proposition 2.2 (Requirement for the subsidy). A farmer with reference
point ’No Insurance Coverage’ demands the subsidized insurance only if the
inequality

s ≥ 1 − 1

p((λ1−p
p )

1/α
+ 1)

is fulfilled. The subsidy requirement is increasing with loss aversion.
Proof: Appendix B.1.

12The median values αm = 0.88, λm = 2.25 of Kahneman and Tversky (1979) were
estimated in experiments with a small number of students. These populations are among
the least representative on a lot of dimensions (Henrich et al., 2010). However, using PT
parameters estimated by Liu (2013) and Holden and Quiggin (2017) in a closer context
lead to similar strict conditions.

13This implication is straightforward since the farmer regards the insurance as an in-
vestment and the decision to demand the insurance as being independent of crop risk.
Hence, he does not demand a zero expected return, positive risk insurance contract.
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Using the median PT parameters αm = 0.88, λm = 2.25 and assuming
that the loss probability lies between 5% and 50%, i.e. 0.05 < p < 0.5,
Proposition 2.2 predicts that a subsidy between 55% and 85% is required
such that a farmer with reference point ’No Insurance Coverage’ demands
the insurance.

2.2 Perfect insurance coverage

We now analyze insurance demand with a state-dependent reference point
equal to wealth with full coverage of an insurance that always - and only
- pays out in case of a loss. Under full coverage the indemnity payment
equals the loss (i.e., I = L). Accordingly, the reference point is W − pI in
all four states.14 Therefore, if the farmer does not demand the insurance
and a loss occurs (state (1) and (2)), there is a loss of I − pI. Furthermore,
there is a gain of the premium pI if no loss occurs (state (3) and (4)). If
the farmer demands the insurance, the existence of basis risk leads to a loss
of the indemnity payment I in state (2) and a gain of I in state (3). Both
states occur with the same probability r. Table 4 presents a summary of
the encoded outcomes and their probabilities.

Table 4: Perfect insurance as reference point

State
Loss No Loss

Indemnity No Indemnity Indemnity No Indemnity
(1) (2) (3) (4)

Probability p(1 − q1) r r (1 − p)(1 − q2)
Gains/Losses, No Insurance (p − 1)I (p − 1)I pI pI

Gains/Losses, Index Insurance 0 −I I 0

A farmer demands the insurance if the PT Value of demanding is at
least as large as the PT Value of not demanding. Neglecting probability
weighting, the condition that needs to be fulfilled is

r(1 − λ)Iα > −pλ ((1 − p)I)α + (1 − p) (pI)α . (3)
14In the states (1) and (2) in which a loss occurs the reference point is W − pI −L+ I =

W − pI. In the states (3) and (4) in which no loss occurs farmers do not receive any
indemnity payment but still have to pay the insurance premium pI. Thus, the reference
point is also W − pI.
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From condition (3) we can see that an increase in the basis risk probability
r negatively impacts the likelihood to demand the index insurance. Further-
more, rearranging leads to

λ(p(1 − p)α − r) + r − (1 − p)pα > 0.

Thus, the likelihood to demand the insurance is increasing with loss aversion
exactly if p(1 − p)α > r. An increase in the basis risk probability r makes
it less likely that this condition is fulfilled. Recalling from our model set
up described at the beginning of Section 2, r = pq1 holds, where q1 denotes
the probability that, given a loss, the insurance does not pay out. Hence,
the condition simplifies to (1 − p)α > q1. The left side of the inequality is
decreasing with α. Thus, it is sufficient to analyze the case α = 1. Assuming
that the loss probability p is below 50%, this condition is fulfilled as long as
q1 < 0.5. We believe that an insurance with a non-performance probability
of above 50% is an unlikely scenario. Accordingly, we conclude that the
likelihood to demand the insurance is increasing with loss aversion under
risk neutrality, i.e., α = 1, and, therefore, also under risk aversion, i.e., α < 1.
Proposition 2.3 summarizes the predictions.

Proposition 2.3. Given the reference point ’Perfect Insurance Coverage’,
insurance demand is decreasing with basis risk and increasing with loss aver-
sion. Furthermore, the positive impact of loss aversion diminishes with an
increasing basis risk.

2.3 Model predictions

Our behavioral model contrasts insurance demand for two reference points:
’No Insurance Coverage’ and ’Perfect Insurance Coverage’. We believe that
these reference points are likely to be related to farmers’ level of insur-
ance understanding and, therefore, the awareness of the loss-hedging benefit
that insurance provides. A farmer without further understanding of the
insurance is not aware of the loss-hedging benefit. Instead, he regards the
insurance as an investment whose payout is not related to harvest loss. Con-
sequently, the farmer only evaluates a payout larger than the purchase price
of the investment - i.e., the insurance premium - as a gain. This view of
’insurance as investment’ rather than a loss-hedging device is supported by
Patt et al. (2009), who report that some farmers are upset if the indem-
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nity payment is less than the premium paid for the insurance. A farmer
with further insurance understanding, however, is aware of the loss-hedging
benefit. Accordingly, he regards the insurance as a loss-hedging device and
exclusively expects an indemnity payment in case of harvest loss. The an-
alyzed reference points capture these two scenarios. We, therefore, suggest
that the reference point ’No Insurance Coverage’ models the index insurance
demand decision of a farmer who is unaware of the loss-hedging benefit that
insurance provides, whereas the reference point ’Perfect Insurance Coverage’
models the index insurance demand decision of a farmer who is aware of the
loss-hedging benefit that insurance provides. We refer to these two types as
naïve and insurance-literate farmers.

We can relate our interpretation of the reference points to models that
endogenize expectations as the reference point (Kőszegi and Rabin, 2006,
2007; Gottlieb and Mitchell, 2015). These models suggest that if a farmer
plans to be covered by an insurance, wealth under insurance coverage serves
as the reference point. Farmers who are unaware of the loss-hedging benefit
of insurance do most likely not plan to buy the insurance. Accordingly, their
reference point should always be the status quo (’No Insurance Coverage’).
Among the group of farmers that are aware of the loss-hedging benefit at
least the ones with a sufficiently large aversion towards losses (risks) plan
to be covered by an insurance that would, in the ideal case, pay out an in-
demnity whenever a loss occurs. Hence, ’Perfect Insurance Coverage’ serves
as the reference point for these farmers. We can further relate our inter-
pretation of the reference points to recent work by Schmidt (2016). Several
empirical studies suggest that individuals often use risk-free outcomes as the
reference point. Transferring this to the insurance context, Schmidt (2016)
proposes wealth under full insurance coverage as a reference point. However,
if farmers are unaware of the loss-hedging benefit that insurance provides,
they do not anticipate that full coverage of an insurance should imply a
risk-free outcome. Thus, following the argumentation of Schmidt (2016),
only the farmers that are aware of the loss-hedging benefit should use the
reference point ’Perfect Insurance Coverage’.

Table 5 summarizes the predictions of our behavioral model and com-
pares them to empirical findings from the literature. Columns (1) and (2)
display the predictions, Columns (3) and (4) the empirical findings.



3 EMPIRICAL SUPPORT 12

Table 5: Behavioral insurance demand model and empirical findings

Behavioral Model Empirical Findings
Naïve Insurance-literate Naïve Insurance-literate
(1) (2) (3) (4)

Basis risk 0 − 0 −
Loss aversion − + n.a. n.a.

Following our PT model, basis risk is not related to the insurance demand
of a naïve farmer, whereas it negatively impacts the insurance demand of an
insurance-literate farmer. A recent study by Jensen et al. (2018) supports
this prediction. Their results suggest that further understanding of the
product considerably increases sensitivity to basis risk. Jensen et al. (2018)
further find only very little relationship between basis risk and insurance
demand among farmers that were not further educated about the index
insurance. Our second prediction addresses the effect of loss aversion on
index insurance demand. To the best of our knowledge, no research on the
relationship between loss aversion and index insurance demand exists. We,
therefore, state our core Hypothesis 2.1:

Hypothesis 2.1. The impact of loss aversion on index insurance demand
varies with the level of insurance understanding. While insurance demand
is decreasing with loss aversion among farmers who are unaware of the loss-
hedging benefit that insurance provides, it is increasing with loss aversion
among farmers who are aware of the loss-hedging benefit that insurance pro-
vides.

3 Empirical support

3.1 Assumptions

To identify the causal relationship between insurance understanding and
the effect of loss aversion on index insurance demand, strict assumptions
must be met. Understanding should be randomly distributed across a group
of otherwise similar farmers. Furthermore, an identical insurance contract
should be offered to all farmers at the same point in time. Finally, farmers
should participate in choice tasks eliciting loss aversion. We did not conduct
our own field experiment. Instead, we make use of the publicly available
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dataset of the randomized controlled trial (RCT) conducted by Cole et al.
(2013) to provide empirical support for our core hypothesis.

Cole et al.’s (2013) field experiments featured real world index insurance
take-up decisions for a relevant and representative subject pool. Next to
these advantages the set up imposes one major limitation; Cole et al. (2013)
did not elicit parameters for loss aversion. We need to impose strict assump-
tions to interpret farmers’ choices in an experimental gamble as indicators
of loss aversion. Farmers were asked to choose among lotteries varying in
risk and expected return. Following Binswanger (1981), Cole et al. (2013)
interpret lottery choices as indicators of risk aversion. As we discuss in Sec-
tion 3.3, the payouts of the experimental choice task are small relative to
farmers’ real world income. Thus, lottery choices are not necessarily suitable
to elicit risk attitudes (Rabin, 2000). Imposing strict assumptions, we show
that lottery choices could also be interpreted as indicators of loss aversion.
One might be critical of using lottery choices in Binswanger (1981) choice
tasks as indicator of loss aversion. Accordingly, we are cautious to interpret
any of our results in a causal manner but, instead, view this approach as a
first step to test our core hypothesis. If we gave up our strict assumptions
and interpret lottery choices as indicators of risk aversion, our empirical
findings would suggest that insurance understanding mitigates the negative
effect of risk aversion on index insurance demand. We explain how such a
finding can be related to our model in the discussion section of this paper.

In the RCT of Cole et al. (2013), some members of a large group of
farmers were randomly assigned to an insurance education module. We
split farmers into two groups according to the assignment of the module. We
then analyze if the relationship between loss aversion and index insurance
demand varies systematically between these two groups. Succinctly put,
we use the assignment of the insurance education module as a proxy for a
higher likelihood that a randomly drawn farmer is aware of the loss-hedging
benefit of insurance. Interpreting the results of this approach as empirical
support for our core hypothesis imposes two key assumptions that deserve
to be explained in detail. First, the insurance education treatment has an
overall positive effect on farmers’ awareness of the loss-hedging benefit that
insurance provides (A1).15 Second, the insurance education treatment does

15This assumption implicitly requires that a sufficiently large number of farmers is
unaware of the loss-hedging benefit before the RCT takes place.
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not impact the relationship between loss aversion and insurance demand
other than by affecting farmers’ awareness of the loss-hedging benefit that
insurance provides (A2).

An ideal experiment would require that every farmer is initially unaware
of the loss-hedging benefit of insurance and every farmer in the treatment
group becomes (due to the education module) aware of the loss-hedging
benefit. Each requirement by itself and, particularly, the overlap of both is
unlikely to be met in the field. Nevertheless, assumption A1 ensures that
the share of farmers that are aware of the loss-hedging benefit is larger in
the treatment than in the control group.16 Accordingly, any differences in
outcome variables between the two groups can possibly be attributed to
differences in the awareness of the loss-hedging benefit that insurance pro-
vides. The same holds for differences in the effect of covariates on outcome
variables. However, the insurance education treatment might also impact
factors other than awareness of the loss-hedging benefit. The concern is
whether we are measuring the true effect of awareness or whether the find-
ings could be driven by other factors, such as the education module causing
an increase in the perceived riskiness of farming. To exclusively attribute
systematic differences in the effect of loss aversion on insurance demand to
differences in awareness of the loss-hedging benefit, assumption A2 must be
met. Finally, it is unlikely that every single farmer in the control group is
unaware and every single farmer in the treatment group becomes (due to
the education module) aware of the loss-hedging benefit of insurance. Thus,
an identification based on the random assignment of an insurance education
treatment works against us, making us less likely to find statistically signifi-
cant effects. Accordingly, our analysis most likely provides an underestimate
of the true effect of insurance understanding on the relationship between loss
aversion and index insurance demand. In the following section, we briefly
introduce the RCT of Cole et al. (2013) and discuss the assumptions A1 and
A2 for this specific set up.

3.2 Design

In 2006, Cole et al. (2013) conducted different experiments in two rural re-
gions of India, Andhra Pradesh and Gujarat. The setting related to our

16This implication requires that the initial share is similar in the control and treatment
group. An assumption that is met due to random treatment assignment.
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hypothesis is the one in Andhra Pradesh. Out of an entire sample popu-
lation of 1,053 farmers in this region, Cole et al. (2013) randomly selected
700. These farmers were visited by trained research institute employees and
received a small monetary compensation for welcoming the employee; they
were further able to buy the insurance policy on the spot. For informa-
tion regarding contract details we refer to Cole et al. (2013). The authors
randomized the content of the visits independently along three dimensions.
First, locally trusted people endorsed the employee prior to visits. Second,
some farmers received an additional high reward at the time of the visit.
Third, and most interesting for us, some farmers received further educa-
tion about the product.17 From now on, we refer to these three treatments
as Endorsement, High Reward, and Insurance Education. Table 18 in the
Appendix provides an overview of group sizes in the different treatments.
Additionally, Cole et al. (2013) used surveys to record basic demographic
characteristics, risk attitudes and, farmers’ decisions on whether to demand
insurance. Table 19 in the Appendix provides summary statistics.

Utilizing the Insurance Education treatment for a test of our core hy-
pothesis requires that assumptions A1 and A2 are met. Cole et al. (2013)
show that a significant portion of these farmers cannot answer simple fi-
nancial questions. They further show that the understanding of the core
component of the index insurance is low. The insurance pays out an in-
demnity if the rainfall measured at the closest weather station falls below
a certain threshold. The possible payout is set in millimeters of rainfall.
However, less than one-quarter of the sample population is familiar with
this unit of measurement.18 Accordingly, the majority of farmers cannot
relate insurance payouts to harvest losses. Thus, farmers have only limited
understanding of the loss-hedging benefit of the insurance.19 The Insurance
Education treatment was designed in cooperation with the local agricul-
tural university to specifically address this issue. Thus, in-line with Cole
et al.’s (2013) interpretation of the treatment, we conclude that it positively

17Cole et al. (2013) use the treatments to investigate the effect of first, trust, second,
liquidity constraints and third, insurance understanding on insurance demand. Our work
replicates the third investigation, but with PT preferences, i.e., by introducing the behav-
ioral bias loss aversion.

18According to Cole et al. (2013), the most common measure used in farming in this
specific region is depth of soil moisture in the ground. Only 22% of the sample population
understand how millimeters of rain translate into depth of soil moisture.

19The authors conclude that their set up ’provides prima facie evidence that households
have only limited understanding of the product’ (Cole et al., 2013, p. 16).
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affected the overall understanding of the insurance and, particularly, the
awareness of the loss-hedging benefit that insurance provides. Accordingly,
assumption A1 is met.

A first concern regarding assumption A2 is that the insurance education
module could increase the perceived riskiness of farming. However, the lit-
erature agrees that the local population is, independent of any treatments,
aware of the riskiness of farming (Giné et al., 2008; Hazell and Hess, 2010;
Fisher and Snapp, 2014). Furthermore, it is unlikely that an insurance ed-
ucation module in which farmers learn how millimeters of rainfall translate
into depth of soil moisture in the ground is related to the perceived riski-
ness of farming. A second concern is that the insurance education module
could increase trust in the provider. In this case, farmers assigned to the
Insurance Education treatment might perceive any product offered during
the visit as less risky. It is unlikely that the content of the education module
affects trust in the provider. Thus, the only way the Insurance Education
treatment could increase trust in the provider would be through personal in-
teraction during the treatment. However, every visited farmer (700 of 1,053)
interacted with a research institute employee. To assuage the concern that
our results are driven by trust in the provider rather than by awareness
of the loss-hedging benefit that insurance provides, we conduct a separate
analysis that only includes visited farmers. This approach can be found as
a robustness check in a later section of the paper. Furthermore, Cole et al.
(2013) conducted the first treatment (Endorsement) to explicitly investigate
the impact of trust in the provider. Thus, if trust in the provider would be
of importance for the relationship between loss aversion and insurance de-
mand, we should observe systematic differences in the effect of loss aversion
for those who did receive the Endorsement treatment and those who did
not. As we show in the empirical analysis, this is not the case.

3.3 Specification

Cole et al. (2013) did not elicit loss and risk aversion parameters simultane-
ously.20 Instead, within their experiments, each farmer only had to choose
one of the six Binswanger (1981) lotteries listed in the first three columns

20Simultaneous elicitation of loss and risk aversion parameters is proposed by Tanaka
et al. (2010) and, for example, used by Liu (2013) in a different agricultural context.
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of Table 6. The payoff of any of these lotteries was determined by the toss
of a fair coin.

Table 6: Binswanger lotteries

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lottery Heads Tails E[Payoff] Share Loss (Heads) Gain (Tails) Gi−Gi+1

Li−Li+1
≤ λ ≤ Gi−Gi−1

Li−Li−1
λmain

(1) 25 25 25 10.3% 0 0 7 ≤ λ 8.5
(2) 20 60 40 25.6% 5 35 4 ≤ λ ≤ 7 5.5
(3) 15 80 47.5 18.0% 10 55 3 ≤ λ ≤ 4 3.5
(4) 10 95 52.5 25.3% 15 70 2 ≤ λ ≤ 3 2.5
(5) 5 105 55 11.0% 20 80 1 ≤ λ ≤ 2 1.5
(6) 0 110 55 9.9% 25 85 λ ≤ 1 1

Following Binswanger (1981), Cole et al. (2013) interpret farmers’ choices
as indicators of risk aversion. The payoffs of the choice task range between
Rs. 0−110 whereas farmers’ mean yearly income is Rs. 57,991 and farmers’
median yearly income is Rs. 34,116.21 Thus, the payouts of the experimental
choice task are small relative to farmers’ real world income.22 Accordingly,
lottery choices only reflect risk aversion if farmers are assumed to evalu-
ate the possible experimental income in isolation from their lifetime income
(Rabin, 2000). This assumption is not necessarily met (for a discussion we
refer to Harrison et al., 2007; Heinemann, 2008). Following other experi-
mental studies (Fehr and Goette, 2007; Gächter et al., 2007; Karle et al.,
2015; Beshears et al., 2017), we assume that farmers integrate the potential
income from the choice task with their lifetime income. According to Ra-
bin’s (2000) calibration theorem, this essentially implies that farmers must
be risk neutral for low-stake gambles. The intuition for this is, as Fehr and
Goette (2007) explain, that risk averse behavior for low-stake gambles would
imply absurd degrees of risk aversion in medium- and high-stake gambles.

Under Expected Utility, risk neutrality implies that farmers should choose
the lotteries with the largest expected payoffs (Lottery (5) or Lottery (6);
see Column (4) of Table 6). If we observe lottery choices that are not consis-

21The differences between mean and median are driven by significant income differences
between agricultural laborers and skilled, respectively landed farmers (Cole et al., 2013).
Given these values, the maximum income from the choice task amounts to 2.3% (= 12 ⋅
110/57,991) of the average monthly income. Hence, stakes are much smaller than in the
high-stake decision task of Binswanger (1981) with stakes amounting to a month’s average
income.

22We thank an anonymous referee for suggesting a comparison between the experimental
income and farmers’ real worlds income.
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tent with this predictions, then this might indicate loss aversion (Fehr and
Goette, 2007; Gächter et al., 2007). Only 20.9% (= 11.0% + 9.9%) of the
sample population choose the lotteries with the largest expected payoff (see
Column (5) of Table 6). 10.3% even choose Lottery (1), the lottery with the
lowest expected payoff.

In the Binswanger (1981) choice set, Lottery (1) is risk-free. Harrison
and Rutström (2008) argue that this certain amount may provide a natural
reference point for subjects to identify gains and losses, which, in turn, might
frame choices in a manner that is sign dependent.23 We follow this argument
and contemplate the possibility that farmers’ choices indicate loss aversion.
Accordingly, we encode all possible lottery outcomes as either gains or losses
with respect to the reference point of the certain amount of 25. For instance,
an outcome of 20 in Lottery (2) is encoded to a loss of 5 (= 20− 25). Losses
and gains are displayed in Column (6) and (7) of Table 6.

Similar to the procedure of Gächter et al. (2007) and Fehr and Goette
(2007), we can then determine loss aversion in the risky choice task by
applying PT. Neglecting probability weighting and assuming risk neutrality,
the PT Value of Lottery (i) is given by Vi = 0.5 ⋅ Gi − λ ⋅ 0.5 ⋅ Li, where
Gi and Li denote the gain and the loss associated with Lottery (i); and
λ denotes the parameter of loss aversion.24 A farmer chooses Lottery (i)
if its PT Value Vi is at least as large as the PT Value of the five other
lotteries. Thus, Vi ≥ Vj ∀j ≠ i has to hold. Inserting the PT Value and
rearranging leads to 0.5 ⋅ (Gi − Gj) ≥ λ ⋅ 0.5 ⋅ (Li − Lj) ∀j ≠ i. In Part
B.2 of the Appendix, we show that these conditions impose a lower and
upper bound for the loss aversion parameter. The bounds depend on the
possible gains and losses associated with Lottery (i) and its two neighboring
Lotteries (i − 1) and (i + 1). Farmers’ choices of Lottery (i) require a loss
aversion parameter λ such that Gi−Gi+1

Li−Li+1
≤ λ ≤ Gi−Gi−1

Li−Li−1
holds. The first and

last lottery only have one neighboring lottery. Thus, we can only derive
23This argument is supported by empirical findings showing that subjects faced with a

choice task do not use the status quo as the reference point, but, instead use the risk-free
option and evaluate the outcomes of the other options relative to this reference point
(Hershey and Schoemaker, 1985; Robinson et al., 2001; Bleichrodt et al., 2001).

24We neglect probability weighting to ensure that the assumptions imposed to derive
the loss aversion measure coincide with the assumptions of the model section. As we show
in Part B.2 of the Appendix, the assumption can be relaxed and it is sufficient to assume
that subjects weight a 0.5-chance for gaining or losing equally (π+(0.5) = π−(0.5)). This
assumption is, for instance, fulfilled by the probability weighting function proposed by
Prelec et al. (1998).
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one interval bound. Column (8) of Table 6 displays the parameter intervals
associated with farmers’ choices in the Binswanger (1981) choice task.25

As the loss aversion parameter cannot be uniquely inferred, we impose
the following values for the main regression analysis (see Column (9) of Table
6). For Lottery (2) to Lottery (5), we use intervals’ midpoints. For Lottery
(6), we impose the value λ = 1 to ensure that subjects are not assumed to be
loss-seeking.26 Regarding Lottery (1), we note that the distances between
our imposed values and the lower interval bounds are 1.5 (= 5.5 − 4) for
Lottery (2), and 0.5 for Lotteries (3), (4) and (5). The distance can not
be calculated for Lottery (6). However, arguing that farmers are unlikely
to be loss seeking, the lower bound would be 1 which would imply that the
distance is 0. The sequence of distances is weakly decreasing. To ensure
that Lottery (1) fits into this sequence, we impose the value λ = 8.5 (= 7
(lower bound) + 1.5 (maximum distance)). Using these values, the mean
loss aversion parameter is λ = 3.8 and the median is λ = 3.5. In line with PT
preferences estimated in other developing countries (Liu, 2013; Holden and
Quiggin, 2017), this value is larger than the one estimated by Kahneman
and Tversky (1979) in student experiments. As we discuss in the robustness
section, the regression results are not driven by these specific parameter
choices but are robust to several redefinitions.27

Our main analysis closely follows the empirical strategy of Cole et al.
(2013). Each household is one observation. Cole et al. (2013) only report
choices within the Binswanger (1981) lotteries for 941 out of 1,053 farmers.
Thus, the sample size reduces from 1,053 to 941. Because the assignment
of the three treatments is random, the empirical specification is straight-

25Deriving the measure of loss aversion, we assume that farmers are risk neutral for
low-stake gambles. In contrast to the income from the experimental gamble, the income
from farming as well as the size of possible losses due to droughts is large (Cole et al.,
2017; Jayachandran, 2006). Thus, the decision to insure can be regarded as a high-stake
decision. Accordingly, assuming that farmers are risk neutral for low-stake gambles does
not necessarily imply that farmers are risk neutral when making the insurance purchase
decision. Our predictions addressing the impact of loss aversion on index insurance de-
mand hold under risk neutrality, i.e., α = 1, as well as under risk aversion, i.e., α ≤ 1.
Thus, even if one would argue that our assumption should imply risk-neutrality for the
insurance demand decision our model predictions would remain unchanged.

26According to our loss aversion measure, a small share of the sample is not loss averse
(Lottery (6); 9.9%). This observation is in line with other studies eliciting PT preferences
(Gächter et al., 2007; Liu, 2013).

27In one of the robustness checks, for example, we follow the procedure of Gächter et al.
(2007) and impose upper interval bounds. However, lottery choices do not imply an upper
bound for Lottery (1). Thus, we still need to impose one additional value.
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forward.28 For the entire sample we estimate a linear probability model of
household insurance demand as a function of the treatment variables and
household level controls. In contrast to Cole et al. (2013), our main interest
is the link between loss aversion and insurance demand across groups with
varying levels of insurance understanding. Accordingly, we add an interac-
tion term of loss aversion with the binary indicator for participation in the
randomized Insurance Education treatment. Finally, we include interaction
terms of loss aversion with dummy variables for the other two treatments
and village fixed effects to control for multiple treatment effects and un-
observed village specific characteristics. Hence, our model to be estimated
equals:

Yi,v = α⋅λi + β1 ⋅ Vi + β2 ⋅ T1,i + β3 ⋅ T2,i + β4 ⋅ T3,i + β5 ⋅ λi × T1,i

+ β6 ⋅ λi × T2,i + γ ⋅ λi × T3,i + βX ⋅Xi + fv + εi.
(4)

As in Cole et al. (2013), our dependent variable Y is a dummy that is
one, if farmer i in village v demands at least one insurance contract. Loss
aversion is depicted by λ. V is a dummy variable indicating whether visits
took place. T1, T2 and T3 are dummy variables for the Endorsement, High
Reward and Insurance Education treatments. X equals a vector of the same
household level controls as used by Cole et al. (2013).29 Finally, fv denotes
village fixed effects. A negative estimate of α and a positive estimate of
γ with a magnitude larger than α would provide empirical support for our
core Hypothesis 2.1.

28To test the successful randomization of the Insurance Education treatment, Table 19
in the Appendix presents summary statistics for the whole sample and two subsamples
created based on the dummy variable for the Insurance Education treatment. T-tests of
covariate means do not invalidate the assumption of random treatment allocation.

29These are: percentage of cultivated land that is irrigated; above average expected
monsoon rain (normalized); whether the household demanded weather insurance in 2004;
insurance skills (normalized); whether the household has other insurance; whether the
household does not know the provider BASIX; whether the household belongs to a wa-
ter user group (either a borowell users association or water user group); the number of
community groups that the household belongs to and indicator variables for whether the
household belongs to a scheduled caste/tribe; whether the household is muslim; gender,
log household age and log household size; dummy for secondary education status; interac-
tion whether endorsements occurred in the village and whether the individual household
was visited, to identify local spillovers from endorsement.
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3.4 Results

Table 7 presents take-up rates of different loss aversion cohorts in the sub-
samples of farmers who did not (No Education) and who did receive the
Insurance Education treatment (Education).

Table 7: Take-up rates of different loss aversion cohorts

Loss aversion ≤ 1 1-2 2-3 3-4 4-7 ≥ 7

No Education
Take-up rate 43.1% 33.8% 22.87% 20% 18.18% 17.39%
Observations 58 71 153 110 165 69

Education
Take-up rate 40% 43.75% 47.06% 42.37% 44.73% 32.14%
Observations 35 32 85 59 76 28

Among the farmers who did not receive the Insurance Education treat-
ment, loss aversion seems to be negatively related to the take-up rate.
Among the farmers who did receive the Insurance Education treatment,
the negative relationship vanishes.

Table 8 presents our regression results.30 Within the different specifica-
tions, we sequentially add further variables. In Specification (1), we regress
insurance demand only on a dummy variable for visits, the three treatment
dummies and the loss aversion parameter. Specification (2) adds village
fixed effects. In Specification (3), we include the interaction term of loss
aversion with the Insurance Education treatment dummy. Specification (4)
further adds household level controls. Finally, by additionally including in-
teraction terms between loss aversion and the other two treatment dummies,
Specification (5) represents our main model equation (4).

Across all five specifications, the coefficients of the Visit dummy and the
dummies for the treatments High Reward and Endorsement are qualitatively
and quantitatively similar to the results of Cole et al. (2013).31 Furthermore,
the coefficient of loss aversion is negative and significant in Specification
(1). The effect vanishes after adding village fixed effects in Specification

30Table 8 simplifies the regression concentrating on treatments, loss aversion and inter-
action terms. The complete regression output is presented in Table 20 of the Appendix. In
the estimated OLS regressions, we use the loss aversion parameters displayed in Column
(9) of Table 6.

31Being assigned to a household visit alone increases insurance demand by 14.6 percent-
age points in specification (5) to 19.3 percentage points in Specification (1). A high reward
increases insurance demand by 26.9 percentage points in Specification (5) to 38.1 percent-
age points in Specification (3). The effect of the Endorsement treatment varies between
6.0 percentage points in Specification (1) and 11.3 percentage points in Specification (5).
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Table 8: Determinants of insurance demand

Dependent variable:

Insurance Take-Up

(1) (2) (3) (4) (5)

Loss Aversion −0.012∗∗ −0.007 −0.016∗∗ −0.012∗ −0.016∗∗

(0.006) (0.006) (0.007) (0.007) (0.008)

Loss Aversion × Insurance Education (1 =Yes) 0.029∗∗ 0.029∗∗ 0.026∗∗

(0.012) (0.012) (0.012)

Visit (1 =Yes) 0.193∗∗∗ 0.192∗∗∗ 0.190∗∗∗ 0.146∗∗∗ 0.146∗∗∗

(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1 =Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.060 0.113∗

(0.033) (0.035) (0.035) (0.036) (0.063)

High Reward (1 =Yes) 0.381∗∗∗ 0.376∗∗∗ 0.381∗∗∗ 0.375∗∗∗ 0.269∗∗∗

(0.031) (0.031) (0.031) (0.031) (0.056)

Insurance Education (1 =Yes) −0.006 −0.011 −0.117∗∗ −0.113∗∗ −0.099∗

(0.031) (0.030) (0.054) (0.054) (0.055)

Loss Aversion × Endorsement (1 =Yes) −0.013
(0.014)

Loss Aversion × High Reward (1 =Yes) 0.029∗∗

(0.013)

Constant 0.090∗∗∗

(0.032)

Village Fixed Effects No Yes Yes Yes Yes
Household Controls No No No Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.280 0.356 0.360 0.387 0.391
Adjusted R2 0.276 0.327 0.330 0.347 0.350
Residual Std. Error 0.391 0.377 0.376 0.371 0.370

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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(2). When interacting the loss aversion parameter with the dummy for the
Insurance Education treatment in Specifications (3) and (4), where the latter
controls for farmer characteristics, we estimate a significant negative effect
of loss aversion and a significant positive effect of its interaction with the
Insurance Education treatment dummy. More precisely, given an increase
in loss aversion by one standard deviation (sd = 2.195, see Table 19) the
likelihood to demand at least one insurance contract decreases by 2.6 (=
2.195 × −0.012) percentage points in Specification (4) to 3.5 (= 2.195 ×
−0.016) percentage points in Specification (3). However, for farmers assigned
to the Insurance Education treatment, the same change results in an increase
by 2.9 (= 2.195 × (−0.016+0.029)) percentage points in Specification (3) to
3.7 (= 2.195 × (−0.012+0.029)) percentage points in Specification (4). The
effects remain stable if we add interaction terms of the other two treatment
dummies with loss aversion in Specification (5). According to the summary
statistics in Table 19 of the Appendix, the mean take-up rate is 30.2% within
the entire sample, 43.2% within the subsample of farmers who received the
Education treatment and 23.6% within the subsample of farmers who did
not receive the Education treatment. Thus, the effects have a meaningful
magnitude. Hence, the empirical findings support our core Hypothesis 2.1.

The empirical analysis further points out two aspects beyond the core
hypothesis. First, the findings of Specification (5) suggest that the effect
of the High Reward treatment on insurance demand is increasing with loss
aversion. Following Cole et al. (2013), the high reward could be regarded
as a tool to overcome liquidity constraints. In this sense, the reward is
a high subsidy. Accordingly, farmers with a larger aversion towards losses
react more sensitively to a high subsidy than the other farmers. This finding
provides suggestive evidence for our Proposition 2.2 which predicts minimum
subsidy requirements for farmers who are unaware of the loss-hedging benefit
of insurance to increase with loss aversion.32

Second, the empirical findings of Specification (3), (4) and (5) suggest
that the effect of the Insurance Education treatment is also heterogeneous

32The interaction term Loss Aversion × High Reward (1=Yes) is estimated within the
entire sample. Thus, for this explanation to hold, the overall awareness of the loss-hedging
benefit that insurance provides has to be low. As discussed earlier, this is, indeed, the
case. Splitting the sample in farmers who received and who did not receive the Insurance
Education treatment, we show that the heterogeneous effect is actually driven by the ones
who are, on average, less likely to be aware of the loss-hedging benefit that insurance
provides (see Table 21 and Table 22 in the Appendix).
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in loss aversion. In particular, the Insurance Education treatment only posi-
tively impacts the insurance demand of farmers with an above median aver-
sion towards losses.33 There are two potential resolutions for this puzzling
finding.34 The first resolution relates to the preferred personal equilibrium
approach (Kőszegi and Rabin, 2006, 2007) that endogenizes expectations
as the reference point. Consistent with this approach, it could be the case
that out of the farmers who received insurance education only the ones with
a high aversion towards losses plan to buy it. Thus, these farmers would
use the reference point wealth with insurance coverage, whereas the oth-
ers (farmers with a smaller aversion towards losses) would use the reference
point wealth without insurance coverage. The shift in the reference point
may, as also suggested in the conclusion of Gottlieb and Mitchell (2015) for
a general insurance context, explain the divergence in preferences.35 The
second resolution suggests that the empirical finding might reflect a strate-
gic consideration of those receiving insurance education. Farmers learn that
they should only buy insurance if their aversion towards losses exceeds a
threshold. Accordingly, only the farmers with a high aversion towards losses
decide to buy the insurance.36

3.5 Robustness

Besley and Case (1993) argue that with cross-sectional data any ex post
measures of covariates could be affected by previous adoption decisions and
are, therefore, endogenous. Although farmers in our sample make their in-
surance demand decision at the same time the survey is conducted, previous
insurance demand might be regarded as a possible source of endogeneity. We
replicate our regressions on a subsample of farmers that did not demand any

33The impact of the Insurance Education treatment is negative for −0.117+λ ⋅0.029 < 0.
This is equivalent to λ < 4.0. In Specification (4) and (5) the impact is negative for
loss aversion parameters below 3.9 (0.113/0.029) and 3.8 (0.099/0.026) respectively. The
median loss aversion in the sample is 3.5. The observation that the Education treatment
does not have an overall positive effect on insurance demand is in-line with the findings
of Cole et al. (2013).

34We thank an anonymous referee for suggesting these two resolutions.
35Gottlieb and Mitchell (2015) suggest that the same subject might have different ref-

erence points in different insurance markets. Consistent with the models of (Kőszegi and
Rabin, 2006, 2007), they suggest that the shift in reference point could be induced through
the effect of framing.

36For this resolution to hold we need to assume that farmers who do not receive insurance
education are confused about the product and, therefore, do not follow a systematic buying
strategy.
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insurance in the previous period. As presented in Table 23 of the Appendix,
the same qualitative results as in Table 8 are observable.

Our sample includes visited as well as non-visited farmers. We replicate
our main analysis on the sample of visited farmers for two different reasons.
First, as discussed earlier, one could argue that the personal interaction in-
cluded in the Insurance Education treatment increases trust in the provider,
which, in turn, could impact the relationship between loss aversion and in-
surance demand.37 Replicating the main analysis on the sample of visited
farmers ensures that every farmer interacted with a research institute em-
ployee. Accordingly, the level of trust induced through personal interaction
should not vary within the sample. Second, one could argue that although
the visited farmers were chosen randomly, this group is not comparable to
the group of non-visited farmers. Visited farmers were able to demand the
insurance policy on the spot, higher effort was required by the non-visited
ones. These farmers could only buy the insurance at local branches. Fur-
thermore, the three treatments were independently randomized among the
visited. Thus, multiple treatments were possible. Accordingly, a farmer
assigned to the Insurance Education treatment is, by construction of the
experiment, more likely to receive a second treatment than a farmer that
is not visited. Table 24 in the Appendix displays the results of our main
empirical analysis on the sample of visited farmers. The estimates and their
significance levels remain stable.

According to our main specification, the impact of the Insurance Edu-
cation treatment as well as the High Reward treatment is increasing with
loss aversion. Furthermore, as already discussed, the analyzed setting fea-
tures multiple treatments. To verify that the estimated joint impact of loss
aversion and the Insurance Education treatment is not driven by a spillover
effect of the High Reward treatment, we replicate our analysis on the sub-
sample of farmers that did not receive the High Reward treatment. The
estimates presented in Table 25 of the Appendix are quantitatively similar
to the ones of our main regression Table 8.

37In Specification (5) of our main analysis, we do not observe systematic differences in
the relationship between loss aversion and insurance demand among farmers who were
assigned to Endorsement treatment and farmers who were not. This already suggests that
trust is not of major importance for the relationship between loss aversion and insurance
demand.
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Our measure of loss aversion suggests that farmers’ choices in the Bin-
swanger (1981) choice task impose a lower and upper bound for the loss
aversion parameter. However, we need to impose fixed values for the re-
gression analysis. The values used for the main analysis are displayed in
Column (9) of Table 6. Our choice for Lottery (1) might seem particu-
larly arbitrary.38 To overcome the concern that our results are driven by
this specific choice, we repeat our main analysis with varying value choices
for Lottery (1). We use λ = 7.5 (= 7 (lower bound) + 0.5 (minimum dis-
tance between lower bounds and imposed values)) and λ = 7.75 (= 7 (lower
bound) + 0.75 (mean distance between lower bounds and imposed values)).
As displayed in Tables 26 and 27 of the Appendix, our estimates and their
significance levels remain stable.

We additionally follow the approach of Gächter et al. (2007) and impose
upper interval bounds. However, the lottery choices do not imply an upper
bound for Lottery (1). We, thus, conduct different analysis with varying
value choices for Lottery (1). We use λ = 8 (= 7 (lower bound) + 1 (mini-
mum distance between lower and upper bound)), λ = 8.5 (= 7 (lower bound)
+ 1.5 (mean distance between lower and upper bound)) and λ = 10 (= 7
(lower bound) + 3 (maximum distance between lower and upper bound)).
The estimates presented in Table 28, 29 and 30 of the Appendix are quan-
titatively similar to the ones of our main regression Table 8. We further
run one set of regressions in which we use ordinal indicators. We assign
the indicators in increasing order meaning that we assign the Lottery (6)
whose choice requires the smallest aversion towards losses the indicator 1.
The advantage of this method is that we do not need to impose any specific
values. As displayed in Table 31 of the Appendix, the loss aversion coeffi-
cient remains negative and statistically significant and the interaction term
positive and statistically significant.

We also replicate Specification (3) to (5) of Table 8 without village fixed
effects. Again, as presented in Table 32 in the Appendix, our findings remain
robust.

Finally, regarding the econometric part, estimating a discrete choice
model using OLS comes at some costs. We replicate our main analysis
using probit regressions. As presented in Table 33 of the Appendix, the sign

38We used interval midpoints for Lottery (2) to Lottery (5). For Lottery (6) we used
the value λ = 1 to ensure that farmers are not assumed to be loss seeking.



4 DISCUSSION 27

of the estimates are the same as the ones of our main regression and also
the significance levels remain stable.

4 Discussion

We have made a number of specific modeling choices for the sake of clarity,
many of which could be revisited or relaxed. The model is built on the
simplifying assumption that farmers gain utility over final wealth. In Part
A of the Online Appendix, we extend the model by integrating the same
two reference points in the intertemporal index insurance demand model of
Carter et al. (2014). The extension does not change the model predictions.

Our core model assumption is that the level of insurance understand-
ing is the only determinant of the reference point. We, therefore, neglect
any other aspects that might impact the reference point formation, such as
the importance of salient memories (Schwartzstein, 2014).39 Furthermore,
against traditional definition but in line with recent developments (Kőszegi
and Rabin, 2006; Schmidt et al., 2008; De Giorgi and Post, 2011; Gottlieb
and Mitchell, 2015), farmers’ reference points are assumed to be endogenous
and state dependent. We suggest that insurance-literate farmers are aware
of the loss-hedging benefit of insurance and, therefore, only expect an in-
demnity payment if a loss occurs. Accordingly, we assume that these farmers
use the reference point wealth with coverage of an insurance that pays out
and indemnity whenever a loss occurs (’Perfect Insurance Coverage’). With
similar reasoning, one could argue that insurance-literate farmers may use
the reference point wealth with index insurance coverage. These farmers
are also aware of the loss-hedging benefit of insurance. Thus, they do not
regard the insurance as an investment. Given the overall benefits of the
index insurance, these farmers even accept the rare occurrences in which a
harvest loss does not trigger an indemnity payment. Thus, in contrast to the
reference point ’Perfect Insurance Coverage’, these farmers do not evaluate
the downside basis risk scenario as a subjective loss. We analyze the choice
of the reference point wealth under index insurance coverage in Part C of

39Salient memories are of particular interest in the index insurance context because it
is very likely to believe that the attitudes towards the insurance of farmers who bought
an insurance but suffered from basis risk change dramatically. For a further discussion of
reference point formation within financial decision making we refer Baucells et al. (2011).
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the Appendix. In-line with the predictions for the reference point ’Perfect
Insurance Coverage’ demand increases with loss aversion.

Our behavioral model analyzes the demand for an insurance that might
not pay out in the case of loss but might also pay out in the case of no loss.
This is a particular feature of an index insurance. In a broader insurance
context, it could be interesting to analyze the impact of loss aversion on
the demand for an insurance that might not pay out in the case of loss
but never pays out in case of no loss. This is often referred to as contract
non-performance (Biener et al., 2017). Using the same reference points as
in our main model, Part D in the Appendix shows that in such a scenario
the predictions regarding the impact of loss aversion on insurance demand
remain unchanged.

We use the dataset of the field experiments conducted by Cole et al.
(2013) to test our core hypothesis. The drawback of this approach is that
Cole et al. (2013) did not elicit parameters for loss aversion. As discussed
in detail in Section 3.3, we have to impose strict assumptions to interpret
choices in the Binswanger (1981) choice task as indicators of loss aversion.
Most importantly, we have to assume that farmers integrate the potential
experimental income with their lifetime income. Combining this assumption
with the observation that the experimental income is relatively small com-
pared to real world income implies that farmers would have to be risk neutral
when choosing a lottery (Rabin, 2000). Although the assumption that sub-
jects integrate experimental income with lifetime income is not uncommon
(see for example Fehr and Goette, 2007; Gächter et al., 2007; Dupas and
Robinson, 2013; Karle et al., 2015; Beshears et al., 2017), the implication of
risk-neutrality runs counter to the classical interpretation of the Binswanger
(1981) choice task. If we give up the assumption that farmers integrate the
experimental income with lifetime income and interpret lottery choices as
indicators of risk aversion, our empirical findings suggest that insurance
understanding mitigates the negative effect of risk aversion on index insur-
ance demand.40 The analysis in Part E of the Appendix shows that index
insurance demand is decreasing with risk aversion for the reference point
’No Insurance Coverage’ and increasing with risk aversion for the reference
point ’Perfect Insurance Coverage’. Accordingly, the empirical findings are

40Cole et al. (2013) map lottery choices into an index between 0 and 1, where large
values indicate higher degrees of risk aversion. We have replicated our regressions analysis
with these risk aversion parameters. Results are displayed in Table 34 of the Appendix.
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also consistent with the predicted relationship between risk aversion and
index insurance demand.

We can even derive the same predictions in a model without any ref-
erence point. One possibility to set up such a model would be to assume
that insurance understanding affects farmers’ perception of the correlation
between insurances’ net transfer and farmers’ net loss. Farmers without fur-
ther understanding of the insurance regard the insurance as a gamble and,
therefore, perceive the correlation to be weak, or, in the extreme case, equal
to zero (no correlation). According to the model of Clarke (2016), insurance
demand would decrease with risk aversion. In contrast, farmers who are
aware of the risk-hedging benefit of an insurance perceive the correlation to
be strong or, in the extreme case, equal to one (perfect correlation). Given
a sufficiently large perceived correlation, insurance demand increases with
risk aversion (Clarke, 2016).41

In line with our model, we suggest that both, aversion towards risks as
well as aversion towards losses, combined with the low level of insurance
understanding offer reasonable explanations for the low take-up rates of
index insurance products. The empirical set up of Cole et al. (2013) does
not allow us to disentangle loss from risk aversion. Accordingly, we can not
separate the effect of loss aversion from that of risk aversion. However, we
believe that our findings are a relevant and important first support for our
core hypothesis.42

5 Conclusion and policy implications

This paper studies the impact of loss aversion on index insurance demand.
We extend existing Prospect Theory insurance demand models (Gottlieb
and Mitchell, 2015; Hwang, 2016; Schmidt, 2016) by including basis risk.
Choosing two different reference points, we attempt to capture different
levels of insurance understanding and, therefore, different levels of awareness
of the loss-hedging benefit that insurance provides. According to our model,
the impact of loss aversion on index insurance demand is heterogeneous

41For the case of perfect correlation, classical insurance demand models (Carter et al.,
2014; Sarris, 2002) also predict a positive relationship between insurance demand and risk
aversion.

42Even if one argues that the lotteries can only be used to proxy risk attitudes, the
results of Goldstein et al. (2008) who estimate a positive correlation between risk and loss
aversion equal to 0.64 support a strong connection between risk and loss attitudes.
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in insurance understanding. The index insurance demand of farmers who
are unaware of the loss-hedging benefit of index insurance is predicted to
decrease with loss aversion, whereas the effect is the opposite for farmers
who are aware of the loss-hedging benefit. Furthermore, our model predicts
that farmers who are unaware of the loss-hedging benefit of insurance and
have median PT parameters reject an even highly subsidized index insurance
offer.

We employ the dataset of Cole et al. (2013) who conducted field ex-
periments in rural regions of India in 2006. In one of three treatments,
Cole et al. (2013) randomly assigned insurance education modules to 350
out of 1053 farmers. We use this treatment as an exogenous variation in
farmers’ level of insurance understanding and, therefore, awareness of the
loss-hedging benefit that insurance provides. The experimental setting en-
sures that both groups were exposed to similar institutions and economic
conditions. Furthermore, identical index insurance contracts were offered to
all farmers. Our findings support our model conjecture that insurance un-
derstanding mitigates the negative effect of loss aversion on index insurance
demand. The findings are robust to several model specifications that include
varying sets of household-level and village-level controls as well as varying
methodological approaches. The drawback of this set-up is that Cole et al.
(2013) did not elicit loss aversion. We need to impose strict assumptions
to interpret lottery choices in the Binswanger (1981) choice task - a task
that is usually applied to elicit risk aversion - as indicators of loss aversion.
Having said this, our findings could also be read as insurance understanding
mitigating the negative effect of risk aversion on index insurance demand.
The empirical set up of Cole et al. (2013) does not allow us to separate the
effect of loss aversion from that of risk aversion. Accordingly, further exper-
iments need to be conducted to find out if the low index insurance take-up
rates are related to a lack of insurance understanding combined with risk
aversion, loss aversion or, what we believe is most likely, a combination of
risk and loss aversion.

Our analysis provides a case-study for how differences in technology un-
derstanding can systematically impact the effect of loss aversion on technol-
ogy adoption. The results support previous findings on the individual effect
of loss aversion (Liu, 2013) and product understanding (Emerick et al., 2016)
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on technology adoption and extend this literature by analyzing the joint im-
pact of these two factors in a specific scenario.

As droughts are one of the main risks faced by the poor in develop-
ing countries, the low adoption rates of formal agricultural insurance have
received considerable attention among policy makers in recent years. The
theoretical and empirical findings of our study are especially relevant for
addressing two puzzles in this context. First, we offer an explanation for
the low take-up rates of even highly subsidized insurance: lack of product
understanding. According to our model, farmers who are unaware of the
loss-hedging benefit of insurance do not even buy a highly subsidized insur-
ance offered at a price equal to 50% of its actuarially fair value. Therefore,
as long as farmers do not understand the product, moderately subsidizing
the insurance should not be regarded as an effective tool to significantly
increase the insurance demand.

Still, investments in insurance education have been made by the public
and private sector with many organizations implementing insurance educa-
tion initiatives on a region-wide scale. Thus, and second, the findings of our
study may help to resolve the puzzle why many of these programs were either
only partially successful or not successful at all. Our results suggest that pol-
icy makers should, in the ideal case, carefully assess individual preferences
among their target population before they administer insurance education
initiatives. In our context, for example, educators should be aware that the
impact of their modules varies significantly with differences in individuals’
loss aversion. Furthermore, the basis risk negatively impacts the insurance
demand of farmers who understand the insurance. In this case, the deviation
of the indemnity payment from the actual loss needs to be reduced, i.e., the
quality of the index insurance needs to be improved. Finally, due to hedonic
editing as proposed by PT, the index insurance indemnity payments should
become more frequent to increase its attractiveness.
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A Online Appendix: Intertemporal models

This section models farmers decision on adopting a new technology: index
insurance. The time horizon is two periods, t = 1,2. Each period’s consump-
tion c(⋅) is a function of the exogenous but stochastic income Yt and possible
insurance indemnity payments. Let c̄ stand for the permanent consumption
that is assumed to be the same in both periods.43 Furthermore, γ ∈ [0,1] is
the smoothing parameter that depends on several farmers’ characteristics.
Finally, according to Deaton (1992), the consumption of a farmer who is
limited in his ability to smooth consumption can be approximated by:44

c(Yt) = c̄ + γ(Yt −E[Yt]).

In the first period the farmer can demand the index insurance for a
premium Π. In the second period, the insured farmer receives an indemnity
payment Z if the index conditions are fulfilled. Furthermore, outcomes of
the second period are discounted. According to recent experimental findings,
the discount factor applied by farmers is low. Therefore, we distinguish
between the farmer’s discount factor δf and the market discount factor δm
and impose the condition δf < δm.

In contrast to Carter et al. (2014), we assume that farmers do not obey
asset integration. Instead, they evaluate monetary outcomes in terms of
gains and losses with respect to some reference point. According to PT, a
farmer’s value function equals

vt(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x − rt)α , if x ≥ rt
−λ(rt − x)β , if x < rt.

(5)

rt is the reference point at time t, α the coefficient of diminishing marginal
sensitivity for gains, β the coefficient of diminishing marginal sensitivity for
losses and λ the coefficient of loss aversion. Given these model assumptions,

43This assumption is reasonable because the time horizon between purchasing the index
insurance and possibly receiving a payout is short. As a result, basic consumption needs
should not change dramatically.

44For a farmer with perfect smoothing ability, the consumption in period t is expected to
be independent of current resources. This is the case for γ = 0. If the smoothing parameter
takes its maximum value, i.e., γ = 1, no smoothing is possible and current consumption
moves exactly as current income.
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a farmer is indifferent between demanding and rejecting the insurance, iff

v1[c(Y1 −Π)] + δfE[v2[c(Y2 +Z)]] = v1[c(Y1)] + δfE[v2[c(Y2)]]. (6)

The premium Π that solves this implicit equation equals the farmer’s (max-
imum) willingness to pay (WTP). We use equation (6) to predict how PT
preferences impact farmers’ WTP within the choice of different reference
points. In particular, we distinguish between two groups: farmers with and
without a deeper understanding of the insurance. We refer to these as ed-
ucated farmers and naive farmers. We assume that naive farmers are not
aware of insurance’s loss-hedging benefit. Instead, they regard the index
insurance as an uncertain investment. A natural reference point to compare
the payoffs of an investment to, is the case of not investing at all. Thus,
we chose the case of not investing as an naive farmer’s reference point and
refer to it as No Insurance Coverage. Consequently, compared to this ref-
erence point, any insurance indemnity payment equals a subjective gain.
Furthermore, within this scenario farmers neglect basis risk.45

In contrast, educated farmers are aware of insurance’s loss-hedging ben-
efit. In particular, they expect a full indemnity payment in case of crop
failure. Thus, they regard any indemnity payment below the actual value
of crop failure as a loss. A natural reference point to model this situation is
a Perfect Insurance.46 Due to the possible deviation of the index insurance
from a perfect insurance, this scenario includes basis risk.

A.1 Reference point: No insurance coverage

A naive farmer’s reference point in each period is the income without insur-
ance coverage. Hence, the reference points for t = 1 and t = 2 are:

r1 = c(Y1) = c̄ + γ(Y1 −E[Y1]) = c̄ + γ △ Y1,

r2 = c(Y2) = c̄ + γ(Y2 −E[Y2]) = c̄ + γ △ Y2.

45Farmer without insurance coverage do not receive any indemnity payment in case of
crop failure. Thus, a possible non-performance of the index insurance in case of crop
failure is not evaluated as a loss.

46By perfect insurance we refer to an insurance whose indemnity payment always equals
the actual value of crop failure.
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According to PT, the possible outcomes of equation (6) have to be encoded
with respect to these reference points.

Table 9: Coding of outcomes relative to no insurance coverage

t = 1 t = 2

insurance c(Y1 −Π) −r1 = −γΠ < 0 c(Y2 +Z) −r2 = γZ

no insurance c(Y1) −r1 = 0 c(Y2) −r2 = 0

As Table 9 shows, if an naive farmer rejects insurance, the outcomes cor-
respond to the reference points. As a result, the farmer neither experiences
a gain nor a loss. If he, instead, demands the insurance, the premium is con-
sidered a loss and the possible payout of the insurance a gain. Due to the
nature of the consumption function, these outcomes are multiplied by the
smoothing factor γ. Using the value function (5) and the coded outcomes,
the equation (6) for the WTP becomes

−λ(γΠ)β + δfγαE[Zα] = 0.

Therefore, a farmer will demand the insurance, if

Π ≤ (δf
λ
⋅ γα−βE[Zα])

1/β
. (7)

Based on equation (7), the following proposition summarizes the predictions
for naive farmers.

Proposition A.1 (WTP of naive farmers under Prospect Theory). Given
the reference point ’No insurance coverage’, naive farmers’ WTP is:

1. increasing with the discount factor.

2. increasing with the expected subjective valuation of indemnity pay-
ments.

3. independent of the basis risk.

4. decreasing in loss aversion.

Proof: Appendix A.5.1.
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In order to derive further insights of naive farmers’ index insurance de-
mand, we now focus on one specific scenario. We assume that the farmers
and the insurance provider operate on a market in which assumption A.1
holds.

Assumption A.1 (Actuarially fair premium). A privately owned insurer
that operates on the free market will never charge a premium lower than the
actuarially fair value δmE(Z).47 Typically, a safety loading factor l > 0 is
added to the premium. Thus, the premium equals (1 + l) ⋅ δmE(Z).

We first analyze whether a farmer will demand an actuarially fair priced
insurance (i.e., l = 0). Otherwise, it is straightforward that a privately owned
insurer aiming for profit (i.e., l > 0), will not generate any demand for its
product. For the sake of simplicity, let the diminishing marginal sensitivity
for gains and losses be equal, i.e., α ≈ β.48 A farmer demands a fairly priced
insurance product, i.e., l = 0, iff

δmE[Z] ≤ (δf
λ
E[Zα])

1
α

. (8)

Inequality (8) can only hold if λ ≤ 1.49 This condition implies that losses do
not loom larger than gains and therefore contradicts one of the main and
heaviest tested assumptions of PT. Resulting, we state that this condition
is never fulfilled.50 Therefore, cases in which naive farmers are offered an
insurance at a price higher than the actuarially fair value need not to be
analyzed as these offers are rejected anyway. Thus, we state the following
proposition.

Proposition A.2 (Neglect of insurance among naive farmers). naive farm-
ers whose reference point is ’No insurance coverage’ will not demand insur-
ance offered at or above its actuarially fair value.

47If an insurer charges a lower premium, then, due to the law of large numbers, it will
run out of money eventually.

48This assumption is supported by Tversky and Kahneman (1992) who find a median
value of αm = βm = 0.88.

49Proof: Appendix A.5.2.
50This implication is straightforward since the naive farmer regards the insurance as an

investment and the decision to demand the insurance as being independent of crop risk.
Hence, he will not demand a negative return, positive risk insurance contract.
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We further analyze the insurance demand if the premium is lower than
its actuarially fair value.51 We therefore assume that Assumption A.2 holds.

Assumption A.2 (Subsidy). With a subsidy factor s ∈ (0,1), the insurance
premium becomes Π = (1 − s) ⋅ δmE(Z).

A naive farmer will demand the index insurance, iff

(1 − s) ⋅ δmE[Z] ≤ (δf
λ
E[Zα])

1
α

. (9)

On the basis of Assumption A.2, Proposition A.3 states minimum re-
strictions for the subsidy s such that an naive farmer demands insurance
coverage.

Proposition A.3 (Requirements for the subsidy). The subsidized insurance
is not attractive for an naive farmer if one or both of the inequalities

s ≥ 1 − λ−1/α (10)

s ≥ 1 − δf

δm
(11)

are not fulfilled. The minimum subsidy requirements are increasing with loss
aversion and decreasing with farmer’s discount factor.52

Proof: Appendix A.5.3.

Using the median PT parameters condition (10) shows that the insurance
is not attractive if s < 0.6.53 As a result, an naive farmer will not demand the
insurance even if the charged premium amounts to only half of its actuarially
fair price, i.e., s = 0.5. The second condition (11) creates a lower bound with
respect to the ratio of the farmer’s and market discount factor. Using the
median farmer discount factor, s ≥ 0.2 has to hold.54

51A possibility for a premium lower than its actuarially fair value to occur are develop-
ment subsidies.

52It is important to mention that these conditions are necessary but not sufficient for
inequality (9) to hold.

53The median values αm = 0.88, λm = 2.25 of Kahneman and Tversky (1979) were
estimated in experiments with a small number of students. These populations are among
the least representative on a lot of dimensions (Henrich et al., 2010). However, using PT
parameters estimated by Liu (2013) and Holden and Quiggin (2017) in a closer context
lead to similar minimum subsidy requirements.

54The market discount factor can, for example, be estimated by using long-term gov-
ernment bond yields. But certainly δm < 1 holds. Hence, condition (11) can be modified
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A.2 Reference Point: Perfect insurance (discrete)

An educated farmer’s reference point is a perfect insurance. Thus, due to a
possible deviation of the index insurance from the perfect insurance, basis
risk enters our model. We define the basis downside risk parameter q and the
upside risk parameter q′ as the probability that the index insurance under-
estimates or, respectively, overestimates the actual loss. We further assume
that both probabilities are the same, i.e., q = q′.55 Therefore, with probabil-
ity 1− 2q the indemnity payment is correct. Furthermore, as Clarke (2016),
we assume that the amount by which the insurance underestimates the crop
failure is the same as the amount by which the insurance overestimates it.
Table 10 summarizes the relationship between the perfect insurance Z2 and
the index insurance Z1:

Table 10: Comparison of perfect and index insurance
Source: Clarke (2016)

Scenario Probability Deviation (Z1 −Z2)
Underestimation of crop failure q −△L

Accurate estimation 1 − 2q 0
Overestimation of crop failure q △L

We further assume that from a farmer’s point of view, the premium of a
perfect insurance equals the premium of an index insurance.56 Accordingly,
the reference points for t = 1 and t = 2 are:

r1 = c(Y1 −Π) = c̄ + γ(Y1 −Π −E[Y1]),
r2 = c(Y2 +Z2) = c̄ + γ(Y2 +Z2 −E[Y2]).

Recalling, the inequality for the WTP is

v1[c(Y1 −Π)] + δfE[v2[c(Y2 +Z1)]] ≥ v1[c(Y1)] + δfE[v2[c(Y2)]]. (12)

Table 11 displays the coding of the outcomes in the two periods:
to m ≤ δf . According to Giné et al. (2008), the median monthly discount factor applied
by farmers is approximately 0.8.

55This assumption corresponds to the findings of Clarke et al. (2012).
56PT aims to reflect a farmer’s points of view. Farmers in rural regions of develop-

ing countries are not expected to understand that index insurances should entail lower
administrative costs. Thus, we deem this assumption reasonable.
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Table 11: Coding of outcomes relative to perfect insurance

t = 1 t = 2

insurance c(Y1 −Π) −r1 = 0 c(Y2 +Z1) −r2 = γ(Z1 −Z2)

no insurance c(Y1) −r1 = γΠ > 0 c(Y2) −r2 = −γZ2

If a farmer decides to demand the index insurance, the premium in the
first period is equal to the premium of the perfect insurance, and thus, the
outcome turns zero. In contrast, if a farmer does not demand the insurance,
the farmer saves, relative to the reference point, the premium. Applying the
PT value function (5) to the first-period outcomes leads to

v1[c(y1 −Π)] = 0,

v1[c(y1)] = (γΠ)α.

If a farmer rejects the insurance, he does not receive the possible payout of
the perfect insurance in the second period. This leads to

E[v2[c(Y2)]] = −γβλE[Zβ2 ].

In contrast, if he demands the index insurance, the second-period outcome,
relative to the reference point, is the deviation of the index insurance payout
from the perfect insurance payout. Referring to Table 10 and using the
probability weighting function π, the valuation becomes

E[v2[c(Y2 +Z1)]] = π(q)[γα(△L)α − γβλ(△L)β].

Plugging these values into inequality (12), the index insurance demand con-
dition is given by

0 + δfπ(q) [γα(△L)α − γβλ(△L)β]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=⊗

≥ (γΠ)α − δfγβλE[Zβ2 ].

Solving for the premium Π leads to

Π ≤
(δfπ(q)⊗ +δfγβλE[Zβ2 ])

1/α

γ
. (13)
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Based on equation (13), the following proposition summarizes the pre-
dictions for educated farmers.

Proposition A.4 (WTP of educated farmers under Prospect Theory).
Given the reference point ’Perfect insurance’, educated farmers’ WTP is:

1. increasing with the discount factor.

2. increasing with the expected subjective valuation of indemnity pay-
ments.

3. increasing with the basis risk.

4. increasing with loss aversion.

Proof: Appendix A.5.4.

While the propositions regarding the discount factor and the expected
subjective valuation of the indemnity payment coincide with the propositions
for the WTP of an educated farmer, the other two show discrepancies.

A.3 Reference Point: Perfect insurance (continuous)

We apply the baseline assumption that Z1 − Z2 ∼ N(0, σ2). In this case,
E[Z1 − Z2] = 0. Furthermore, the normal distribution is symmetric, hence,
the probability for overestimation is the same as the probability for underes-
timation and it can represent infinitely many scenarios. Finally, the variance
σ2 represents the basis risk. A higher variance, and therefore higher basis
risk leads to higher possible estimation errors. If the basis risk is small, i.e.,
σ2 ≈ 0, with high probability only small estimation errors occur.

If an educated farmer demands the insurance, his valuation of the second-
period outcome is equal to the expected difference between the index in-
surance and the perfect insurance. This difference is normally distributed
around the mean zero. Therefore, with probability 1/2 it is positive or neg-
ative. As a result, the expected second-period valuation of an educated
farmer who purchases the insurance product is equal to:

E[v2[c(Y2 +Z2)]] =
1
2
⋅ δfγα ⋅ (σ2)α/100f(α) − 1

2
⋅ λδfγα ⋅ (σ2)α/100f(α)

= 1
2
⋅ δfγα ⋅ (1 − λ) ⋅ (σ2)α/100f(α),
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where f(α) denotes a strictly positive function depending on the parameter
α.57 Using these values, an educated farmer will purchase the insurance
product, if

0 + 1
2
δfγ

α(1 − λ) ⋅ (σ2)α/100f(α) ≥ (γΠ)α − δfγαλE[Zα2 ].

Consequently, the insurance purchase condition with respect to the premium
Π becomes

Π ≤ (1
2
δf(1 − λ) ⋅ (σ2)α/100f(α) + δfλE[Zα2 ])

1/α

.

The inequality above leads to the following Proposition A.5.

Proposition A.5 (WTP of educated farmers under Prospect Theory II).
Given the reference point ’Perfect insurance (continous)’, the WTP of edu-
cated farmers is characterized in the following way:

1. A higher discount factor leads to a higher WTP.

2. A higher expected subjective valuation of the future indemnity payment
leads to a higher WTP.

3. An increase in the basis risk influences the WTP negatively.

4. An increase in loss aversion results into a higher WTP.

Proof: Appendix A.6.2

All propositions correspond to the results in the discrete case. The main
difference is that the basis risk parameter and the amount by which an in-
surance underestimates/overestimates the value of crop failure are captured
by one variable: the variance of the normal distribution.

Hence, transforming the discrete scenario from the previous section to
a more realistic, continuous representation leaves all important implications
unchanged.

A.4 Model predictions

This section summarizes the model predictions and compares them to the
base model of Carter et al. (2014) and empirical findings. Column (1) of

57Proof: Appendix A.6.1.
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Table 12 summarizes the predictions of the expected utility model of Carter
et al. (2014). Columns (2) and (3) compare these to the predictions of our
behavioral model. In line with the base model of Carter et al. (2014), the
behavioral model predicts the WTP of both farmer types to be increasing
with the discount factor as well as in the expected subjective valuation of
the indemnity payment. In contrast to Carter et al. (2014), the behavioral
model predicts heterogeneous effects of basis risk and loss aversion among
farmer with different levels of insurance understanding. In particular, basis
risk negatively impacts the WTP of an educated farmer whereas it is not
related to the WTP of an naive farmer. Furthermore, an increase in loss
aversion increases the WTP of an educated farmer and decreases the WTP
of an naive farmer.

Table 12: Comparison of rational and behavioral insurance demand model

Expected Utility Prospect Theory Empirical Findings

Carter et al. (2014) Naive Educated Naive Educated

(1) (2) (3) (4) (5)

Discount rate + + + ○ ○

Expected payout + + + + +

Basis risk − ○ − ○ −

Loss aversion n.a. − + n.a. n.a.

As displayed by column (4) and (5) of Table 12, a large part of our
propositions has already been tested by the empirical literature.58 First, in
contrast to our Propositions A.1.1 and A.4.1, Cole et al. (2013) and Giné
et al. (2008) find index insurance demand to be independent of the discount
rate. Second, under the assumption that past average payout in a farmer’s
village can be used as an approximation of the expected subjective valua-
tion of the indemnity payment, Propositions A.1.2 and A.4.2 find support
by Cole et al. (2013). Third, recent findings of Jensen et al. (2018) suggest
that deeper understanding of the product increases sensitivity to basis risk
considerably. In particular, Jensen et al. (2018) find only very little relation-

58Instead of measuring farmer’s WTP, empirical research mainly focus on observed
insurance demand. But, because the market demand curve originates from the premium
individuals are willing to pay, the demand is an appropriate measure for the WTP.
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ship between basis risk and demand among farmers that were not further
educated about the index insurance.

The only part of our propositions that has not been tested by the empir-
ical literature are Proposition A.1.4 and A.4.4. We therefore combine these
to our core Hypothesis A.1:

Hypothesis A.1. The impact of loss aversion on the WTP varies with the
level of insurance understanding. While the WTP is increasing with loss
aversion among educated farmers it is decreasing with loss aversion among
Naive farmers.

A.5 Proofs of the intertemporal model (discrete)

A.5.1 Proof of Proposition A.1

The equation for the WTP equals

Π = (δf
λ
⋅ γα−βE[Zα])

1/β

.

Calculating the partial derivatives leads to the proofs of the corresponding
propositions:

1. ∂Π
∂δf

= 1
β

(δf
λ
⋅ γα−βE[Zα])

1/β−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅ 1
λ
γα−βE [Zα]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

> 0 ⇒ Prop. A.1.1,

2. ∂Π
∂E(Zα) = 1

β
(δf
λ
⋅ γα−βE[Zα])

1/β−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅ δf
λ
γα−β

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
>0

> 0 ⇒ Prop. A.1.2,

4. ∂Π
∂λ

= 1
β

(δf
λ
⋅ γα−βE[Zα])

1/β−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅ − δf
λ2γ

α−βE [Zα]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<0

< 0 ⇒ Prop. A.1.4.

Farmers without insurance coverage do not receive any indemnity payment
in case of crop failure. Thus, a possible non-performance of the index insur-
ance in case of crop failure is not evaluated as a loss ⇒ Proposition A.1.3.
◻
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A.5.2 Proof of Equation (8)

The discussed inequality equals

δmE(Z) ≤ [δf
λ
E(Zα)]

1/α

.

A few mathematical tools have to be considered: First, PT assumes di-
minishing marginal sensitivity for losses and gains(i.e., α < 1 and β < 1).
Accordingly, Zα is a concave function and Jensen’s inequality is applicable.
Second, because of δf < 1 < 1

α , certainly (δf)
1/α < δf has to hold. Finally,

the discount rate δf applied by the farmers is low. Therefore, δf < δm is
assumed. To summarize, the following three inequalities hold:

(i) E(Zα) ≤ [E(Z)]α

(ii) (δf)
1/α ≤ δf

(iii) δf ≤ δm

We show that λ ≤ 1 holds:

δmE(Z) ≤ [δf
λ
E(Zα)]

1/α

= (δf
λ

)
1/α

(E(Zα))1/α

(i)
≤ [δf

λ
]

1/α

⋅E(Z) = ( 1
λ
)

1/α

⋅ (δf)
1/α ⋅E(Z)

(ii)
≤ [ 1

λ
]

1/α

δf ⋅E(Z)
(iii)
≤ [ 1

λ
]

1/α

δmE(Z).

Hence,

δmE[Z] ≤ ( 1
λ
)

1/α

δmE[Z]

has to be statisfied. This is equivalent to

1 ≤ ( 1
λ
)

1/α

⇔ λ ≤ 1.

◻



A ONLINE APPENDIX: INTERTEMPORAL MODELS 50

A.5.3 Proof of Proposition A.3

The inequality discussed is given by

(1 − s) ⋅ δmE(Z) ≤ [δf
λ
E(Zα)]

1/α

.

With similar argumentations as in the previous proof of Equation (8), the
following inequalities certainly hold:

(i) E(Zα) ≤ [E(Z)]α

(ii) (δf)
1/α ≤ δf

(iii) δf ≤ δm

(iv) ( 1
λ
)

1/α ≤ 1

First, s ≥ 1 − λ−1/α is shown:

(1 − s) ⋅ δmE(Z) ≤ [δf
λ
E(Zα)]

1/α

⇔(1 − s) ⋅ δmE(Z) ≤ ( 1
λ
)

1/α

[δfE(Zα)]
1/α (i),(ii),(iii)≤ ( 1

λ
)

1/α

δmE(Z)

⇔(1 − s) ≤ ( 1
λ
)

1/α

⇔s ≥ 1 − λ−1/α.

Second, s ≥ 1 − δf
δm

is shown:

(1 − s) ⋅ δmE(Z) ≤ [δf
λ
E(Zα)]

1/α

⇔(1 − s) ⋅ δmE(Z) ≤ ( 1
λ
)

1/α

[δfE(Zα)]
1/α (i),(ii),(iv)≤ 1 ⋅ δfE(Z)

⇔(1 − s) ≤ δf

δm

⇔s ≥ 1 − δf

δm
.

◻
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A.5.4 Proof of Proposition A.4

Solving for the premium Π leads to

Π ≤ 1
γ
⋅
⎛
⎜⎜⎜⎜
⎝
δfπ(q)⊗ +δfγβλE[Zβ2 ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=(⋆)

⎞
⎟⎟⎟⎟
⎠

1/α

. (14)

For the effect of the subjective valuation, we calculate the derivative of the
upper boarder for the premium:

∂Π
∂Z1

= 1
αγ

(⋆)1/α−1

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅δf ⋅ π(q) ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α [γ(∆L)]α−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅γ − λβ [γ(∆L)]β−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅(−γ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

> 0.

Since we consider the case of positive insurance demand (Π > 0), (⋆) > 0 has
to hold. ⇒ Prop. A.4.2
Since it holds ⊗ < 0, an increase in the basis risk parameter q leads to a
smaller WTP.59 If we again assume β ≈ α,

⊗ = γα(△L)α[1 − λ]

holds. As the loss aversion parameter is always larger than one (λ > 1), an
increasing error in estimating △L leads to a more negative value of ⊗ and
therefore to a decreasing WTP. ⇒ Prop. A.4.3
Condition (14) becomes

Π ≤ (δfπ(q)(△L)α[1 − λ] + δfλE[Zα2 ])
1/α
.

59According to PT, ’the aggravation one experiences in losing a sum of money appears
to be greater than the pleasure associated with gaining the same amount’(Kahneman and
Tversky, 1979, p. 279), e.g., v(x) < −v(−x). Now, even when arguing that the insurance’s
actuaries are approximating the value of crop failure well and therefore conclude that the
basis risk parameter is small, the influence of the basis risk should still not be neglected,
because, according to PT, small probabilities are often overestimated, i.e., π(q) > q. Thus,
farmers will overestimate small basis risk parameters.
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To analyze the remaining partial derivatives, the following inequalities
are needed:

(i) π(q)(△L)α > 0

(ii) π(q)(△L)α = E [(Z2 −Z1)α1{Z2>Z1}]
Z1>0< E(Zα2 ).

Calculation of the partial derivatives leads to:

∂Π
∂δf

= 1
α
⋅ δ1/α−1
f ⋅ [π(q)(△L)α + λ(E[Zα2 ] − π(q)(△L)α)]

(i),(ii)
> 0 ⇒ Prop. A.4.1,

∂Π
∂λ

= 1
α

(δfπ(q)(△L)α[1 − λ] + δfλE[Zα2 ])
1/α−1 ⋅ δf(E(Zα2 ) − π(q)(△L)α)

(ii)
> 0 ⇒ Prop., A.4.4.

◻

A.6 Proofs of the intertemporal model (continous)

A.6.1 Deviation of f(α)

For a random Variable X with density function fx

E [Xα] = ∫
∞

−∞

xαfx(x)dx.

Furthermore, because of (Z1 −Z2) ∼ N(0, σ2), the regarded density is given
by

fZ1−Z2 =
1√

2πσ2
exp(−x

2

2σ2 ) .

Due to the symmetry of the normal distribution, with probability 1
2 the

difference is negative or positive. For the negative values, following prospect
theory, v(−x) = −λv(x) holds. Hence, it holds

E[(Z1 −Z2)α] =
1
2
⋅ (1 − λ) ⋅ ∫

∞

0
xα

1√
2πσ2

exp(−x
2

2σ2 )dx

= 1
2
⋅ (1 − λ) ⋅

(σ2)α/100 ⋅ Γ (1+α
2 )

21−α/200
√
π

,
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where Γ denotes the Gamma-function with

Γ(z) = ∫
∞

0
tz−1 exp(−t)dt.

To conclude:

E[(Z1 −Z2)α] =
1
2
⋅ (1 − λ)(σ2)α/100 ⋅ f(α),

with

f(α) = Γ(1 + α
2

) 1
21−α/200

√
π
> 0 ∀ α > 0.

◻

A.6.2 Proof of Proposition A.5

The WTP equals

Π = (1
2
δf(1 − λ) ⋅ (σ2)α/100f(α) + δfλE[Zα2 ])

1/α

.

The following inequalities hold:

i) 1
2 ⋅ (σ

2)α/100 ⋅ f(α) > 0

ii) 1
2 ⋅ (σ

2)α/100 ⋅ f(α) = E [(Z2 −Z1)α1{Z2>Z1}]
Z1>0< E[Zα2 ].

Calculation of the partial derivatives leads to:

∂Π
∂δf

= 1
α
⋅ δ(1/α)−1
f ⋅ [1

2
(σ2)α/100f(α) + λ(E[Zα2 ] − 1

2
⋅ (σ2)α/100f(α))]

(i),(ii)
> 0,

∂Π
∂λ

= 1
α
⋅ (1

2
δf(1 − λ) ⋅ (σ2)α/100f(α) + δfλE[Zα2 ])

1/α−1

⋅ δf (E[Zα2 ] − 1
2
⋅ (σ2)α/100f(α))

(ii)
> 0,

∂Π
∂σ2 = 1

α
⋅ (1

2
δf(1 − λ) ⋅ (σ2)α/100f(α) + δfλE[Zα2 ])

1/α−1

⋅ α
100

⋅ 1
2
δf(1 − λ) ⋅ (σ2)α/100−1f(α) < 0.

◻
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B Appendix 1: Proofs

B.1 Proof of Proposition 2.2

Given a subsidized insurance premium, the condition such that a farmer
buys the insurance becomes

−λ(1 − p)((1 − s)pI)α + p((1 − p(1 − s))I)α ≥ 0.

This condition can be simplified to

p((1 − p(1 − s)))α ≥ λ(1 − p)((1 − s)p)α.

⇔ p

1 − p
((1 − p(1 − s)))α

((1 − s)p)α ≥ λ

⇔ p

1 − p ( 1
(1 − s)p − 1)

α

≥ λ

⇔ 1
(1 − s)p − 1 ≥ (λ1 − p

p
)

1/α

⇔ 1
(1 − s)p ≥ (λ1 − p

p
)

1/α

+ 1

⇔ 1
1 − s ≥ p((λ

1 − p
p

)
1/α

+ 1)

⇔1 − s ≤ 1

p((λ1−p
p )

1/α
+ 1)

⇔s ≥ 1 − 1

p((λ1−p
p )

1/α
+ 1)

◻
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B.2 Measure of loss aversion: upper and lower bound

Table 13: Binswanger lotteries

(1) (2) (3) (4) (5) (6)

Lottery Loss Gain Low. Bound (λ ≥ Gi−Gi+1
Li−Li+1

) Up. Bound (λ ≤ Gi−Gi−1
Li−Li−1

) Low. Bound - Up. Bound

(1) 0 0 V1 ≥ V2⇔ λ ≥ 7 - ≥ 7

(2) 5 35 V2 ≥ V3⇔ λ ≥ 4 V2 ≥ V1⇔ λ ≤ 7 4-7

(3) 10 55 V3 ≥ V4⇔ λ ≥ 3 V3 ≥ V2⇔ λ ≤ 4 3-4

(4) 15 70 V4 ≥ V5⇔ λ ≥ 2 V4 ≥ V3⇔ λ ≤ 3 2-3

(5) 20 80 V5 ≥ V6⇔ λ ≥ 1 V5 ≥ V4⇔ λ ≤ 2 1-2

(6) 25 85 - V6 ≥ V5⇔ λ ≤ 1 ≤ 1

Neglecting probability weighting and assuming that farmers are risk neu-
tral and use the risk-free Lottery (1) as the reference point, the PT Value of
Lottery (i) is Vi = 0.5 ⋅Gi − λ ⋅ 0.5 ⋅Li, where Gi and Li denote the loss and
the gain associated with Lottery (i); and λ denotes the parameter of loss
aversion. The losses and gains associated with each lottery are displayed
in Column (2) and (3) of Table 13. The aim of this Proof is to show that
farmers’ choices for Lottery (i) require that Gi−Gi+1

Li−Li+1
≤ λ ≤ Gi−Gi−1

Li−Li−1
holds.

We start with deriving the lower bound Gi−Gi+1
Li−Li+1

≤ λ.
A farmer prefers Lottery (i) over Lottery (i + 1) if Vi ≥ Vi+1 holds. Using
the PT Value, the inequality becomes

0.5 ⋅Gi − λ ⋅ 0.5 ⋅Li ≥ 0.5 ⋅Gi+1 − λ ⋅ 0.5 ⋅Li+1

⇔0.5 ⋅ (Gi −Gi+1) ≥ λ ⋅ 0.5 ⋅ (Li −Li+1)
⇔(Gi −Gi+1) ≥ λ ⋅ (Li −Li+1).

Because Li −Li+1 < 0 holds for all i, the inequality above can be rearranged
to λ ≥ Gi−Gi+1/Li−Li+1.60 Column (4) of Table 13 displays the loss aversion
parameters required such that Vi ≥ Vi+1 holds. The sequence of the param-
eters is strictly decreasing. Thus, it follows that Vi ≥ Vi+1 implies Vi ≥ Vi+k
∀k > 1.61 Accordingly, it is sufficient to consider the condition Vi ≥ Vi+1 to
estimate the lower loss aversion bound associated with farmers’ choices for

60Note that the sign of the inequality flipped from ≥ into ≤ because we divided both
sides by the negative term Li −Li−1.

61A numerical example: V1 ≥ V2 requires λ ≥ 7. V2 ≥ V3 requires λ ≥ 4. Thus, if V1 ≥ V2
is fulfilled, V2 ≥ V3 is also fulfilled. Thus, it follows that V1(≥ V2) ≥ V3.
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Lottery (i).

The argumentation for the upper bound (λ ≤ Gi−Gi−1
Li−Li−1

) is the same.
A farmer prefers Lottery (i) over Lottery (i − 1) if Vi ≥ Vi−1 holds. Using
the PT Value, the inequality becomes

0.5 ⋅Gi − λ ⋅ 0.5 ⋅Li ≥ 0.5 ⋅Gi−1 − λ ⋅ 0.5 ⋅Li−1

⇔0.5 ⋅ (Gi −Gi−1) ≥ λ ⋅ 0.5 ⋅ (Li −Li−1)
⇔(Gi −Gi−1) ≥ λ ⋅ (Li −Li−1).

Because Li −Li−1 > 0 holds for all i, the inequality above can be rearranged
to λ ≤ Gi−Gi−1/Li−Li−1. Column (5) displays the loss aversion parameter
required such that Vi ≥ Vi−1 holds. Note that the sequence of parameters is
again strictly decreasing. 62 Thus, this time it follows that Vi ≥ Vi−1 implies
Vi ≥ Vi−j ∀j > 1.63 Accordingly, it is sufficient to consider the condition
Vi ≥ Vi−1 to estimate the upper bound associated with farmers’ choices of
Lottery (i).
To conclude, the lower bound ensures that Vi ≥ Vi+k holds ∀k > 0 and
the upper bound ensures that Vi ≥ Vi−j holds ∀j > 0. Thus, the interval
between these two bounds ensures that the PT Value of Lottery (i) (weakly)
dominates all other lotteries meaning that Vi ≥ Vu holds ∀ u ≠ i. The
parameter intervals associated with each lottery are displayed in Column
(6) of Table 13 .
Finally, it is not necessary to neglect probability weighting. We can derive
the same intervals if we impose the weaker assumption that farmer weight
a 0.5-chance for gaining or losing equally (π+(0.5) = π−(0.5) = π(0.5)). This
assumption is, for instance, fulfilled by the probability weighting function
proposed by Prelec et al. (1998). Imposing this assumption, Vi ≥ Vi+1 implies
π(0.5)⋅Gi−λ⋅π(0.5)⋅Li ≥ π(0.5)⋅Gi+1−λ⋅π(0.5)⋅Li+1. This can be simplified
to (Gi −Gi+1) ≥ λ ⋅ (Li − Li+1). Thus, we obtain the same condition as we
did when we neglected probability weighting. The same holds for Vi ≥ Vi−1.

62The inequality sign turned from ≥ into ≤.
63A numerical example: V3 ≥ V2 requires λ ≤ 4. V2 ≥ V1 requires λ ≤ 7. Thus, if V3 ≥ V2

is fulfilled, V2 ≥ V1 is also fulfilled. Thus, it follows that V3(≥ V2) ≥ V1.
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C Appendix 2: Reference point index insurance

Table 14: Index insurance as reference point

State

Loss No Loss

Indemnity No Indemnity Indemnity No Indemnity

(1) (2) (3) (4)

Probability p(1 − q1) r r (1 − p)(1 − q2)

Gains/Losses, No Insurance (p − 1)I < 0 pI (p − 1)I pI

Gains/Losses, Index Insurance 0 0 0 0

We use p(1 − q1) + r = p and r + (1 − p)(1 − q2) = 1 − p. Farmers demand
index insurance if

−λp[(1 − p) ⋅ I]α + (1 − p)(pI)α
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

value no insurance

≤ 0
´¸¶

value index insurance

⇔ (1 − p)(pI)α
p(1 − p)α ⋅ Iα ≤ λ

(1 − p
p

)
1−α

≤ λ.

We can see that an increase in λ makes the condition more likely to be
fullfilled.
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D Appendix 3: Behavioral model (only downside
basis risk)

We consider an insurance that only possibly underestimates the actual loss.
In order to keep the analysis simple, we focus on a model with only three
states of the world. A loss L will occur with probability p, no loss with
probability 1−p. Furthermore, to include the downside basis risk, we assume
that given a loss, there is a probability q1 > 0 that the insurance does not
pay out the indemnity payment I. We label farmer’s initial wealth level with
W and, finally, assume that the Π = pI. Thus, the negative basis risk is not
priced in the insurance. Table 15 summarizes the outcomes for a farmer who
demands the insurance and a farmer who does not demand the insurance.

Table 15: Four state framework

State
Loss No Loss

Indemnity No Indemnity No Indemnity
(1) (2) (3)

Probability p(1 − q1) pq1 1 − p
Gains/Losses, Insurance Cover W − pI −L + I W − pI −L W − pI
Gains/Losses, No Insurance Cover W −L W −L W

D.1 Reference point no insurance coverage

Table 16 summarizes the encoded outcomes relative to the first reference
point ’No Insurance Coverage’:

Table 16: Reference point no insurance coverage

State
Loss No Loss

Indemnity No Indemnity No Indemnity
(1) (2) (3)

Probability p(1 − q1) r 1 − p
Gains/Losses, Insurance Cover −pI + I −pI −pI
Gains/Losses, No Insurance Cover 0 0 0

Accordingly, a farmer will buy the insurance iff

−λ(1 − p + r)(pI)α + p(1 − q1)((1 − p)I)α ≥ 0.
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It is obvious that the insurance demand is decreasing with loss aversion and
basis risk probability.

D.2 Reference point perfect insurance

Table 17 summarizes the encoded outcomes if ’Perfect Insurance’ is chosen
as a reference point

Table 17: Reference point perfect insurance

State
Loss No Loss

Indemnity No Indemnity No Indemnity
(1) (2) (3)

Probability p(1 − q1) r 1 − p
Gains/Losses, Insurance Cover 0 −I 0
Gains/Losses, No Insurance Cover (p − 1)I (p − 1)I pI

Accordingly, a farmer will buy the insurance, iff

−rλIα+ > −pλ ((1 − p)I)α + (1 − p) (pI)α .

Rearranging leads to

λ(p(1 − p)α − r) − (1 − p)pα > 0.

It is obvious that the insurance demand is decreasing with the basis risk
probability. Furthermore, as in the main model case, the positive impact
of loss aversion depends on the condition p(1 − p)α > r which is most likely
fulfilled. Rearranging shows that the loss aversion parameter that is required
such that farmers buy the insurance is given by

λ > (1 − p)pα
(p(1 − p)α − r) . (15)

To recall, in our main model 2.2 the condition such that a farmer buys
the insurance equals

λ(p(1 − p)α − r) + r − (1 − p)pα > 0.
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Rearranging leads to

λ > (1 − p)pα
(p(1 − p)α − r) − r. (16)

It is obvious, that condition (16) is weaker than condition (15). Accordingly,
under the existence of only downside basis risk, higher loss aversion levels
are required to convince a farmer to buy the insurance.
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E Appendix 4: Insurance demand and risk aver-
sion

E.1 No insurance coverage

Following inequality (2), we know that farmers demand insurance if

−λ(1 − p)(pI)α + p((1 − p)I)α ≥ 0.

Rearranging for α leads to

λ ≤ ( p

1 − p)
1−α

⇔ ln p
1−p
λ ≤ 1 − α

⇔ α ≤ 1 − ln p
1−p
λ.

Therefore, insurance demand is most likely decreasing with risk aversion
when using no insurance as reference point.

E.2 Perfect insurance

Following inequality (3), we know that farmers demand insurance if

r(1 − λ)Iα > −pλ ((1 − p)I)α + (1 − p) (pI)α .

Rearranging leads to

λ(p(1 − p)α − r) + r − (1 − p)pα > 0

⇔ λp(1 − p)α − λr + r − (1 − p)pα > 0

⇔ r(1 − λ) > (1 − p)pα − λp(1 − p)α

r(1 − λ)
p(1 − p) > pα−1 − λ(1 − p)α−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(∗)

.
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The smaller (∗) = e(α−1)ln(p) − λe(α−1)ln(1−p), the more likely the condition
is fulfilled:

∂(∗)
∂α

= ln(p)e(α−1)ln(p) − λ ⋅ ln(1 − p)e(α−1)ln(1−p) !< 0

⇔ ln(p)pα−1 − λln(1 − p)(1 − p)α−1 < 0

⇔ ln(p)pα−1 < λln(1 − p)(1 − p)α−1

⇔ λ( ln(p)
ln(1 − p))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>1∀p<0.5

> (1 − p
p

)
α−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<1∀p<0.5

which is a most likely fulfilled condition. Therefore, insurance demand is
most likely (p < 0.5) increasing with risk aversion when using perfect insur-
ance as reference point.
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F Appendix 5: Additional tables

Table 18: Treatment overview

N

Not Visited 347
Visited 700

No Treatment 130
Insurance Education 129
Endorsement 74
High Reward 101
Insurance Education & Endorsement 65
Insurance Education & High Reward 102
Endorsement & High Reward 45
Insurance Education & Endorsement & High Reward 54

Table 19: Summary statistics and t-tests

Entire Sample Insurance Education No Insurance Education t-test
Mean (SD) Mean (SD) Mean (SD)

Take-Up Rate 0.302 (0.459) 0.432 (0.496) 0.236 (0.425) 0.000
Loss Aversion 3.809 (2.195) 3.676 (2.131) 3.875 (2.226) 0.183
Percent of irrigated land 0.417 (0.432) 0.429 (0.437) 0.411 (0.430) 0.544
Above average expected monsoon rain -0.002 (1.052) 0.046 (1.069) -0.027 (1.043) 0.319
Insurance demand in 2004 (1=Yes) 0.260 (0.439) 0.248 (0.432) 0.267 (0.443) 0.525
Insurance skills 0.004 (1.000) 0.095 (0.866) -0.042 (1.058) 0.034
Has other insurance (1=Yes) 0.814 (0.389) 0.819 (0.386) 0.812 (0.391) 0.778
Does not know Basix (1=Yes) 0.294 (0.456) 0.273 (0.446) 0.305 (0.461) 0.303
Belongs to Water User Group (1=Yes) 0.019 (0.137) 0.019 (0.137) 0.019 (0.137) 0.990
No. of community groups 0.740 (0.628) 0.800 (0.639) 0.709 (0.621) 0.039
Belongs to Scheduled Caste/Tribe (1=Yes) 0.112 (0.315) 0.124 (0.330) 0.105 (0.307) 0.410
Muslim (1=Yes) 0.037 (0.189) 0.032 (0.176) 0.040 ( 0.196) 0.517
Gender (1=Male) 0.946 (0.227) 0.937 (0.244) 0.950 ( 0.217) 0.406
log household head age 3.855 (0.258) 3.872 (0.250) 3.846 (0.262) 0.136
household size 6.274 (2.826) 6.083 (2.759) 6.371 (2.857) 0.136
High Education (1=Yes) 0.312 (0.464) 0.279 (0.449) 0.329 (0.470) 0.115
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Table 20: Determinants of insurance demand (full table)

Dependent variable:
’Insurance Take-Up’

(1) (2) (3) (4) (5)
Loss Aversion −0.012∗∗ −0.007 −0.016∗∗ −0.012∗ −0.016∗∗

(0.006) (0.006) (0.007) (0.007) (0.008)

Visit (1=Yes) 0.193∗∗∗ 0.192∗∗∗ 0.190∗∗∗ 0.146∗∗∗ 0.146∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.060 0.113∗
(0.033) (0.035) (0.035) (0.036) (0.063)

High Reward (1=Yes) 0.381∗∗∗ 0.376∗∗∗ 0.381∗∗∗ 0.375∗∗∗ 0.269∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.056)

Insurance Education (1=Yes) −0.006 −0.011 −0.117∗∗ −0.113∗∗ −0.099∗
(0.031) (0.030) (0.054) (0.054) (0.055)

Loss Aversion × Insurance Education 0.029∗∗ 0.029∗∗ 0.026∗∗
(0.012) (0.012) (0.012)

Loss Aversion × Endorsement −0.013
(0.014)

Loss Aversion × High Reward 0.029∗∗
(0.013)

Percent of irrigated land 0.008 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.021
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.077∗∗ 0.076∗∗
(0.034) (0.034)

Insurance skills −0.004 −0.004
(0.016) (0.016)

Has other insurance (1=Yes) 0.089∗∗∗ 0.089∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.077∗∗ −0.076∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.045 0.039
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.014 0.022
(0.042) (0.042)

Muslim (1=Yes) −0.023 −0.021
(0.077) (0.076)

Gender (1=Male) 0.003 0.011
(0.057) (0.057)

Log household head age 0.059 0.053
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.056∗ 0.058∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.065 0.065
(0.059) (0.059)

Constant 0.090∗∗∗
(0.032)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.361 0.387 0.391
Adjusted R2 0.275 0.327 0.331 0.348 0.350
Residual Std. Error 0.391 0.377 0.376 0.371 0.370
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 21: Determinants of insurance demand (subsample: Farmer who did
not receive insurance education)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4)
Loss Aversion −0.020∗∗∗ −0.017∗∗∗ −0.012∗ −0.015∗

(0.006) (0.006) (0.007) (0.008)

Visit (1=Yes) 0.193∗∗∗ 0.191∗∗∗ 0.111∗∗ 0.112∗∗
(0.036) (0.036) (0.051) (0.051)

Endorsement (1=Yes) 0.055 0.068 0.029 0.136∗
(0.042) (0.044) (0.047) (0.077)

High Reward (1=Yes) 0.384∗∗∗ 0.377∗∗∗ 0.368∗∗∗ 0.249∗∗∗
(0.040) (0.040) (0.040) (0.068)

Loss Aversion × Endorsement −0.028∗
(0.016)

Loss Aversion × High Reward 0.031∗∗
(0.015)

Percent of irrigated land −0.010 −0.012
(0.037) (0.037)

Above average expected monsoon rain −0.019 −0.021
(0.014) (0.014)

Insurance skills −0.0002 −0.001
(0.018) (0.018)

Has other insurance (1=Yes) 0.081∗∗ 0.080∗∗
(0.037) (0.037)

Does not know Basix (1=Yes) −0.093∗∗∗ −0.096∗∗∗
(0.034) (0.034)

Belongs to Water User Group (1=Yes) −0.085 −0.088
(0.105) (0.104)

No. of community-groups 0.049∗∗ 0.042∗
(0.024) (0.024)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.046 0.053
(0.048) (0.048)

Muslim (1=Yes) −0.068 −0.067
(0.079) (0.079)

Gender (1=Male) −0.031 −0.030
(0.065) (0.065)

Log household head age 0.035 0.028
(0.057) (0.057)

Household size 0.002 0.003
(0.005) (0.005)

High Education (1=Yes) 0.102∗∗∗ 0.103∗∗∗
(0.032) (0.032)

Village Endorsed (1=Yes) 0.129∗∗ 0.129∗∗
(0.063) (0.062)

Constant 0.120∗∗∗
(0.032)

Village Fixed Effects No Yes Yes Yes
Observations 626 626 626 626
Mean Dependent Variable 0.236 0.236 0.236 0.236
R2 0.320 0.396 0.434 0.440
Adjusted R2 0.316 0.355 0.381 0.385
Residual Std. Error 0.352 0.341 0.335 0.334
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 22: Determinants of insurance demand (subsample: Farmer who
received insurance education)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4)
Loss Aversion 0.005 0.014 0.018 0.010

(0.012) (0.012) (0.013) (0.019)

Endorsement (1=Yes) 0.060 0.100∗ 0.102∗ 0.117
(0.054) (0.059) (0.060) (0.114)

High Reward (1=Yes) 0.386∗∗∗ 0.372∗∗∗ 0.365∗∗∗ 0.285∗∗∗
(0.053) (0.053) (0.053) (0.106)

Loss Aversion × Endorsement −0.004
(0.026)

Loss Aversion × High Reward 0.023
(0.026)

Percent of irrigated land 0.120∗ 0.126∗
(0.071) (0.072)

Above average expected monsoon rain −0.011 −0.012
(0.026) (0.027)

Insurance skills 0.022 0.024
(0.035) (0.036)

Has other insurance (1=Yes) 0.097 0.099
(0.071) (0.071)

Does not know Basix (1=Yes) −0.068 −0.063
(0.069) (0.070)

Belongs to Water User Group (1=Yes) 0.304 0.298
(0.200) (0.201)

No. of community-groups −0.013 −0.011
(0.042) (0.042)

Belongs to Scheduled Caste/Tribe (1=Yes) −0.032 −0.020
(0.088) (0.090)

Muslim (1=Yes) 0.124 0.124
(0.202) (0.202)

Gender (1=Male) 0.096 0.105
(0.110) (0.111)

Log household head age 0.027 0.025
(0.112) (0.112)

Household size 0.008 0.008
(0.010) (0.010)

High Education (1=Yes) −0.005 −0.002
(0.064) (0.064)

Constant 0.211∗∗∗
(0.063)

Village Fixed Effects No Yes Yes Yes
Observations 315 315 315 315
Mean Dependent Variable 0.432 0.432 0.432 0.432
R2 0.154 0.341 0.377 0.379
Adjusted R2 0.146 0.247 0.253 0.250
Residual Std. Error 0.459 0.431 0.429 0.430
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 23: Determinants of insurance demand (subsample: Farmer who did
not demand insurance in 2004)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.001 0.002 −0.007 −0.008 −0.012

(0.006) (0.006) (0.008) (0.008) (0.009)

Visit (1=Yes) 0.186∗∗∗ 0.179∗∗∗ 0.178∗∗∗ 0.162∗∗∗ 0.165∗∗∗
(0.039) (0.039) (0.039) (0.056) (0.056)

Endorsement (1=Yes) 0.011 0.013 0.012 0.004 0.055
(0.036) (0.039) (0.038) (0.041) (0.073)

High Reward (1=Yes) 0.447∗∗∗ 0.449∗∗∗ 0.452∗∗∗ 0.449∗∗∗ 0.366∗∗∗
(0.034) (0.034) (0.034) (0.035) (0.064)

Insurance Education (1=Yes) −0.021 −0.020 −0.125∗∗ −0.123∗∗ −0.121∗
(0.034) (0.033) (0.061) (0.062) (0.063)

Loss Aversion × Insurance Education 0.027∗∗ 0.028∗∗ 0.028∗∗
(0.013) (0.013) (0.014)

Loss Aversion × Endorsement −0.013
(0.015)

Loss Aversion × High Reward 0.022
(0.014)

Percent of irrigated land −0.013 −0.011
(0.038) (0.038)

Above average expected monsoon rain −0.018 −0.019
(0.014) (0.014)

Insurance skills −0.008 −0.009
(0.017) (0.017)

Has other insurance (1=Yes) 0.083∗∗ 0.083∗∗
(0.036) (0.036)

Does not know Basix (1=Yes) −0.070∗∗ −0.069∗∗
(0.033) (0.033)

Belongs to Water User Group (1=Yes) −0.009 −0.014
(0.127) (0.127)

No. of community-groups 0.010 0.007
(0.024) (0.024)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.016 0.021
(0.044) (0.044)

Muslim (1=Yes) 0.027 0.028
(0.081) (0.081)

Gender (1=Male) −0.020 −0.012
(0.070) (0.070)

Log household head age 0.058 0.055
(0.059) (0.059)

Household size 0.003 0.004
(0.005) (0.005)

High Education (1=Yes) −0.006 −0.004
(0.035) (0.035)

Village Endorsed (1=Yes) 0.019 0.018
(0.066) (0.066)

Constant 0.019
(0.035)

Village Fixed Effects No Yes Yes Yes Yes
Observations 696 696 696 696 696
Mean Dependent Variable 0.272 0.272 0.272 0.272 0.272
R2 0.333 0.393 0.397 0.409 0.412
Adjusted R2 0.328 0.355 0.358 0.357 0.358
Residual Std. Error 0.365 0.358 0.357 0.357 0.357
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 24: Determinants of insurance demand (subsample: Visited farmers)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.013 −0.007 −0.023∗∗ −0.017 −0.034∗∗

(0.008) (0.008) (0.011) (0.011) (0.014)

Endorsement (1=Yes) 0.060 0.069 0.067 0.061 0.094
(0.038) (0.042) (0.042) (0.042) (0.076)

High Reward (1=Yes) 0.381∗∗∗ 0.372∗∗∗ 0.375∗∗∗ 0.365∗∗∗ 0.207∗∗∗
(0.037) (0.036) (0.036) (0.036) (0.069)

Insurance Education (1=Yes) −0.006 −0.014 −0.150∗∗ −0.138∗∗ −0.137∗∗
(0.036) (0.035) (0.069) (0.069) (0.069)

Loss Aversion × Insurance Education 0.036∗∗ 0.036∗∗ 0.037∗∗
(0.016) (0.016) (0.016)

Loss Aversion × Endorsement −0.008
(0.017)

Loss Aversion × High Reward 0.043∗∗∗
(0.016)

Percent of irrigated land −0.002 −0.00002
(0.048) (0.048)

Above average expected monsoon rain −0.022 −0.024
(0.018) (0.018)

Insurance demand in 2004 (1=Yes) 0.094∗∗ 0.095∗∗
(0.048) (0.047)

Insurance skills 0.021 0.023
(0.025) (0.025)

Has other insurance (1=Yes) 0.103∗∗ 0.103∗∗
(0.048) (0.048)

Does not know Basix (1=Yes) −0.092∗∗ −0.087∗
(0.047) (0.047)

Belongs to Water User Group (1=Yes) 0.042 0.025
(0.144) (0.143)

No. of community-groups 0.010 0.006
(0.030) (0.030)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.005 0.023
(0.060) (0.060)

Muslim (1=Yes) −0.031 −0.021
(0.128) (0.127)

Gender (1=Male) 0.024 0.045
(0.082) (0.082)

Log household head age 0.072 0.063
(0.077) (0.076)

Household size 0.005 0.006
(0.007) (0.007)

High Education (1=Yes) 0.060 0.063
(0.043) (0.043)

Village Endorsed (1=Yes)

Constant 0.285∗∗∗
(0.047)

Village Fixed Effects No Yes Yes Yes Yes
Observations 634 634 634 634 634
Mean Dependent Variable 0.427 0.427 0.427 0.427 0.427
R2 0.158 0.276 0.283 0.316 0.325
Adjusted R2 0.153 0.227 0.234 0.251 0.258
Residual Std. Error 0.456 0.435 0.433 0.429 0.427
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 25: Determinants of insurance demand (subsample: Farmers who
did not receive the high reward)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.021∗∗∗ −0.017∗∗∗ −0.023∗∗∗ −0.020∗∗∗ −0.019∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.007)

Visit (1=Yes) 0.178∗∗∗ 0.158∗∗∗ 0.161∗∗∗ 0.169∗∗∗ 0.169∗∗∗
(0.035) (0.034) (0.034) (0.047) (0.047)

Endorsement (1=Yes) 0.098∗∗ 0.141∗∗∗ 0.138∗∗∗ 0.142∗∗∗ 0.178∗∗
(0.038) (0.040) (0.039) (0.043) (0.075)

Insurance Education (1=Yes) 0.0004 0.008 −0.089 −0.099 −0.105
(0.037) (0.035) (0.063) (0.063) (0.064)

Loss Aversion × Insurance Education 0.024∗ 0.026∗∗ 0.028∗∗
(0.013) (0.013) (0.013)

Loss Aversion × Endorsement −0.009
(0.015)

Percent of irrigated land 0.010 0.011
(0.034) (0.034)

Above average expected monsoon rain −0.016 −0.016
(0.013) (0.013)

Insurance skills −0.025 −0.025
(0.016) (0.016)

Has other insurance (1=Yes) 0.065∗ 0.065∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.099∗∗∗ −0.099∗∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.044 0.046
(0.097) (0.097)

No. of community-groups 0.036∗ 0.035
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.008 0.007
(0.043) (0.043)

Muslim (1=Yes) 0.033 0.033
(0.075) (0.075)

Gender (1=Male) −0.011 −0.012
(0.057) (0.057)

Log household head age −0.015 −0.016
(0.053) (0.053)

Household size −0.003 −0.003
(0.005) (0.005)

High Education (1=Yes) 0.077∗∗ 0.078∗∗
(0.030) (0.030)

Village Endorsed (1=Yes) −0.009 −0.009
(0.058) (0.058)

Constant 0.124∗∗∗
(0.031)

Village Fixed Effects No Yes Yes Yes Yes
Observations 653 653 653 653 653
Mean Dependent Variable 0.153 0.153 0.153 0.153 0.153
R2 0.108 0.267 0.272 0.312 0.313
Adjusted R2 0.103 0.219 0.223 0.249 0.248
Residual Std. Error 0.341 0.318 0.318 0.312 0.313
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.



F APPENDIX 5: ADDITIONAL TABLES 70

Table 26: Determinants of insurance demand (λ = 7 +min(distance) = 7.5)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.013∗∗ −0.007 −0.017∗∗ −0.013 −0.018∗∗

(0.006) (0.006) (0.008) (0.008) (0.009)

Visit (1=Yes) 0.192∗∗∗ 0.191∗∗∗ 0.189∗∗∗ 0.146∗∗∗ 0.146∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.060 0.121∗
(0.033) (0.035) (0.035) (0.036) (0.066)

High Reward (1=Yes) 0.381∗∗∗ 0.377∗∗∗ 0.382∗∗∗ 0.375∗∗∗ 0.262∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.059)

Insurance Education (1=Yes) −0.006 −0.011 −0.130∗∗ −0.125∗∗ −0.110∗
(0.031) (0.030) (0.057) (0.057) (0.058)

Loss Aversion × Insurance Education 0.033∗∗ 0.033∗∗ 0.030∗∗
(0.013) (0.013) (0.014)

Loss Aversion × Endorsement −0.016
(0.015)

Loss Aversion × High Reward 0.031∗∗
(0.014)

Percent of irrigated land 0.008 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.021
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.077∗∗ 0.076∗∗
(0.034) (0.034)

Insurance skills −0.004 −0.004
(0.016) (0.016)

Has other insurance (1=Yes) 0.090∗∗∗ 0.091∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.076∗∗ −0.075∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.045 0.039
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.014 0.022
(0.042) (0.042)

Muslim (1=Yes) −0.021 −0.020
(0.076) (0.076)

Gender (1=Male) 0.003 0.010
(0.057) (0.056)

Log household head age 0.058 0.053
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.056∗ 0.058∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.064 0.064
(0.059) (0.059)

Constant 0.092∗∗∗
(0.033)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.361 0.387 0.391
Adjusted R2 0.275 0.327 0.331 0.348 0.350
Residual Std. Error 0.391 0.377 0.376 0.371 0.370
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 27: Determinants of insurance demand
(λ = 7 +mean(distance) = 7.75)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.013∗∗ −0.007 −0.017∗∗ −0.012 −0.017∗∗

(0.006) (0.006) (0.007) (0.008) (0.009)

Visit (1=Yes) 0.193∗∗∗ 0.191∗∗∗ 0.189∗∗∗ 0.146∗∗∗ 0.146∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.060 0.119∗
(0.033) (0.035) (0.035) (0.036) (0.065)

High Reward (1=Yes) 0.381∗∗∗ 0.376∗∗∗ 0.381∗∗∗ 0.375∗∗∗ 0.264∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.058)

Insurance Education (1=Yes) −0.006 −0.011 −0.127∗∗ −0.122∗∗ −0.107∗
(0.031) (0.030) (0.057) (0.056) (0.057)

Loss Aversion × Insurance Education 0.032∗∗ 0.032∗∗ 0.029∗∗
(0.013) (0.013) (0.013)

Loss Aversion × Endorsement −0.015
(0.015)

Loss Aversion × High Reward 0.031∗∗
(0.014)

Percent of irrigated land 0.008 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.021
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.077∗∗ 0.076∗∗
(0.034) (0.034)

Insurance skills −0.004 −0.004
(0.016) (0.016)

Has other insurance (1=Yes) 0.090∗∗∗ 0.090∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.076∗∗ −0.075∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.045 0.039
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.014 0.022
(0.042) (0.042)

Muslim (1=Yes) −0.022 −0.020
(0.077) (0.076)

Gender (1=Male) 0.003 0.010
(0.057) (0.056)

Log household head age 0.058 0.053
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.056∗ 0.058∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.064 0.064
(0.059) (0.059)

Constant 0.091∗∗∗
(0.033)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.361 0.387 0.391
Adjusted R2 0.275 0.327 0.331 0.348 0.350
Residual Std. Error 0.391 0.377 0.376 0.371 0.370
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 28: Determinants of insurance demand (λupper bound = 8)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.010∗ −0.005 −0.014∗∗ −0.010 −0.013∗

(0.006) (0.006) (0.007) (0.007) (0.008)

Visit (1=Yes) 0.191∗∗∗ 0.190∗∗∗ 0.188∗∗∗ 0.146∗∗∗ 0.146∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.077∗∗ 0.059 0.132∗∗
(0.033) (0.035) (0.035) (0.036) (0.067)

High Reward (1=Yes) 0.382∗∗∗ 0.377∗∗∗ 0.382∗∗∗ 0.376∗∗∗ 0.268∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.060)

Insurance Education (1=Yes) −0.005 −0.010 −0.137∗∗ −0.130∗∗ −0.116∗∗
(0.031) (0.030) (0.058) (0.058) (0.059)

Loss Aversion × Insurance Education 0.029∗∗ 0.029∗∗ 0.027∗∗
(0.011) (0.011) (0.012)

Loss Aversion × Endorsement −0.016
(0.013)

Loss Aversion × High Reward 0.025∗∗
(0.012)

Percent of irrigated land 0.009 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.020
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.077∗∗ 0.076∗∗
(0.034) (0.034)

Insurance skills −0.003 −0.003
(0.016) (0.016)

Has other insurance (1=Yes) 0.091∗∗∗ 0.093∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.075∗∗ −0.075∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.046 0.040
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.014 0.022
(0.042) (0.042)

Muslim (1=Yes) −0.019 −0.019
(0.076) (0.076)

Gender (1=Male) 0.004 0.008
(0.056) (0.056)

Log household head age 0.056 0.052
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.057∗ 0.059∗∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.063 0.062
(0.059) (0.059)

Constant 0.087∗∗
(0.034)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.360 0.387 0.391
Adjusted R2 0.275 0.326 0.331 0.348 0.350
Residual Std. Error 0.391 (df = 935) 0.377 (df = 899) 0.376 (df = 898) 0.371 (df = 883) 0.370 (df = 881)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 29: Determinants of insurance demand (λupper bound = 8.5)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.010∗ −0.005 −0.014∗∗ −0.010 −0.013∗

(0.005) (0.005) (0.006) (0.006) (0.007)

Visit (1=Yes) 0.192∗∗∗ 0.191∗∗∗ 0.188∗∗∗ 0.146∗∗∗ 0.146∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.077∗∗ 0.059 0.129∗
(0.033) (0.035) (0.035) (0.036) (0.066)

High Reward (1=Yes) 0.381∗∗∗ 0.377∗∗∗ 0.382∗∗∗ 0.376∗∗∗ 0.269∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.059)

Insurance Education (1=Yes) −0.006 −0.010 −0.132∗∗ −0.126∗∗ −0.113∗
(0.031) (0.030) (0.057) (0.057) (0.058)

Loss Aversion × Insurance Education 0.028∗∗ 0.028∗∗ 0.026∗∗
(0.011) (0.011) (0.011)

Loss Aversion × Endorsement −0.015
(0.013)

Loss Aversion × High Reward 0.025∗∗
(0.012)

Percent of irrigated land 0.009 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.021
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.077∗∗ 0.076∗∗
(0.034) (0.034)

Insurance skills −0.003 −0.003
(0.016) (0.016)

Has other insurance (1=Yes) 0.090∗∗∗ 0.092∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.076∗∗ −0.075∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.046 0.040
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.014 0.022
(0.042) (0.042)

Muslim (1=Yes) −0.020 −0.020
(0.076) (0.076)

Gender (1=Male) 0.004 0.009
(0.056) (0.056)

Log household head age 0.057 0.052
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.057∗ 0.059∗∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.064 0.063
(0.059) (0.059)

Constant 0.087∗∗∗
(0.033)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.360 0.387 0.391
Adjusted R2 0.275 0.327 0.331 0.348 0.350
Residual Std. Error 0.391 (df = 935) 0.377 (df = 899) 0.376 (df = 898) 0.371 (df = 883) 0.370 (df = 881)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 30: Determinants of insurance demand (λupper bound = 10)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.009∗ −0.005 −0.013∗∗ −0.009 −0.013∗

(0.005) (0.005) (0.006) (0.006) (0.007)

Visit (1=Yes) 0.193∗∗∗ 0.191∗∗∗ 0.189∗∗∗ 0.146∗∗∗ 0.147∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.059 0.119∗
(0.033) (0.035) (0.035) (0.036) (0.063)

High Reward (1=Yes) 0.381∗∗∗ 0.377∗∗∗ 0.382∗∗∗ 0.375∗∗∗ 0.275∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.055)

Insurance Education (1=Yes) −0.006 −0.011 −0.119∗∗ −0.114∗∗ −0.101∗
(0.031) (0.030) (0.054) (0.054) (0.055)

Loss Aversion × Insurance Education 0.024∗∗ 0.024∗∗ 0.022∗∗
(0.010) (0.010) (0.010)

Loss Aversion × Endorsement −0.012
(0.011)

Loss Aversion × High Reward 0.023∗∗
(0.010)

Percent of irrigated land 0.009 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.021
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.077∗∗ 0.076∗∗
(0.034) (0.034)

Insurance skills −0.004 −0.004
(0.016) (0.016)

Has other insurance (1=Yes) 0.090∗∗∗ 0.090∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.076∗∗ −0.075∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.046 0.040
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.014 0.022
(0.042) (0.042)

Muslim (1=Yes) −0.022 −0.021
(0.077) (0.076)

Gender (1=Male) 0.004 0.010
(0.057) (0.056)

Log household head age 0.058 0.052
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.056∗ 0.058∗∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.065 0.064
(0.059) (0.059)

Constant 0.087∗∗∗
(0.032)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.360 0.387 0.391
Adjusted R2 0.275 0.327 0.330 0.347 0.350
Residual Std. Error 0.391 (df = 935) 0.377 (df = 899) 0.376 (df = 898) 0.371 (df = 883) 0.370 (df = 881)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 31: Determinants of insurance demand (λ ∈ {1, . . . ,6})

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.017∗∗ −0.009 −0.026∗∗ −0.019∗ −0.028∗∗

(0.009) (0.009) (0.010) (0.011) (0.012)

Visit (1=Yes) 0.192∗∗∗ 0.191∗∗∗ 0.187∗∗∗ 0.146∗∗∗ 0.146∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.059 0.123
(0.033) (0.035) (0.035) (0.036) (0.083)

High Reward (1=Yes) 0.380∗∗∗ 0.377∗∗∗ 0.382∗∗∗ 0.376∗∗∗ 0.225∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.074)

Insurance Education (1=Yes) −0.005 −0.010 −0.200∗∗∗ −0.193∗∗∗ −0.168∗∗
(0.031) (0.030) (0.072) (0.072) (0.073)

Loss Aversion × Insurance Education 0.052∗∗∗ 0.052∗∗∗ 0.045∗∗
(0.018) (0.018) (0.018)

Loss Aversion × Endorsement −0.017
(0.021)

Loss Aversion × High Reward 0.042∗∗
(0.019)

Percent of irrigated land 0.009 0.010
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.020
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.078∗∗ 0.079∗∗
(0.034) (0.034)

Insurance skills −0.004 −0.004
(0.016) (0.016)

Has other insurance (1=Yes) 0.090∗∗∗ 0.092∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.074∗∗ −0.073∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.044 0.038
(0.094) (0.094)

No. of community-groups 0.018 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.015 0.024
(0.042) (0.042)

Muslim (1=Yes) −0.019 −0.017
(0.076) (0.076)

Gender (1=Male) 0.003 0.009
(0.056) (0.056)

Log household head age 0.059 0.054
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.056∗ 0.057∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.063 0.063
(0.059) (0.059)

Constant 0.109∗∗∗
(0.040)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.362 0.389 0.392
Adjusted R2 0.276 0.327 0.332 0.349 0.351
Residual Std. Error 0.391 (df = 935) 0.377 (df = 899) 0.375 (df = 898) 0.371 (df = 883) 0.370 (df = 881)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 32: Determinants of insurance demand (regressions without village
FE)

Dependent variable:
Insurance Take-Up

(1) (2) (3)
Loss Aversion −0.020∗∗∗ −0.013∗ −0.018∗∗

(0.007) (0.007) (0.008)

Visit (1=Yes) 0.192∗∗∗ 0.182∗∗∗ 0.182∗∗∗
(0.036) (0.040) (0.040)

Endorsement (1=Yes) 0.057∗ 0.058 0.077
(0.033) (0.037) (0.064)

High Reward (1=Yes) 0.385∗∗∗ 0.382∗∗∗ 0.298∗∗∗
(0.031) (0.031) (0.056)

Insurance Education (1=Yes) −0.099∗ −0.096∗ −0.082
(0.056) (0.055) (0.056)

Loss Aversion × Insurance Education 0.025∗∗ 0.024∗ 0.021∗
(0.013) (0.012) (0.013)

Loss Aversion × Endorsement −0.004
(0.014)

Loss Aversion × High Reward 0.023∗
(0.013)

Percent of irrigated land 0.023 0.022
(0.032) (0.032)

Above average expected monsoon rain −0.012 −0.013
(0.012) (0.012)

Insurance demand in 2004 (1=Yes) 0.061∗ 0.060∗
(0.031) (0.031)

Insurance skills 0.025∗ 0.025∗
(0.014) (0.014)

Has other insurance (1=Yes) 0.105∗∗∗ 0.104∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.084∗∗∗ −0.083∗∗∗
(0.029) (0.029)

Belongs to Water User Group (1=Yes) 0.126 0.121
(0.093) (0.093)

No. of community-groups 0.028 0.027
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.017 0.024
(0.041) (0.041)

Muslim (1=Yes) 0.068 0.071
(0.067) (0.067)

Gender (1=Male) −0.011 −0.004
(0.057) (0.057)

Log household head age 0.049 0.045
(0.052) (0.052)

Household size 0.005 0.005
(0.005) (0.005)

High Education (1=Yes) 0.027 0.029
(0.029) (0.029)

Village Endorsed (1=Yes) −0.002 −0.002
(0.038) (0.038)

Constant 0.120∗∗∗ −0.230 −0.203
(0.035) (0.212) (0.213)

Observations 941 941 941
Mean Dependent Variable 0.302 0.302 0.302
R2 0.283 0.323 0.326
Adjusted R2 0.278 0.308 0.309
Residual Std. Error 0.390 (df = 934) 0.382 (df = 919) 0.382 (df = 917)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 33: Determinants of Insurance Demand (probit regression)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Loss Aversion −0.051∗∗ −0.051∗∗ −0.096∗∗∗ −0.067∗∗ −0.128∗∗∗

(0.023) (0.023) (0.030) (0.031) (0.043)

Visit (1=Yes) 1.014∗∗∗ 1.014∗∗∗ 1.022∗∗∗ 1.066∗∗∗ 1.092∗∗∗
(0.162) (0.162) (0.163) (0.187) (0.190)

Endorsement (1=Yes) 0.177 0.177 0.168 0.193 0.122
(0.111) (0.111) (0.111) (0.135) (0.234)

High Reward (1=Yes) 1.008∗∗∗ 1.008∗∗∗ 1.027∗∗∗ 1.097∗∗∗ 0.665∗∗∗
(0.106) (0.106) (0.107) (0.112) (0.210)

Insurance Education (1=Yes) −0.019 −0.019 −0.421∗∗ −0.433∗∗ −0.407∗
(0.106) (0.106) (0.201) (0.210) (0.211)

Loss Aversion × Insurance Education 0.110∗∗ 0.113∗∗ 0.112∗∗
(0.046) (0.048) (0.050)

Loss Aversion × Endorsement 0.025
(0.053)

Loss Aversion × High Reward 0.121∗∗
(0.050)

Percent of irrigated land 0.100 0.098
(0.129) (0.129)

Above average expected monsoon rain −0.057 −0.060
(0.049) (0.050)

Insurance demand in 2004 (1=Yes) 0.198 0.197
(0.125) (0.125)

Insurance skills 0.186∗∗∗ 0.192∗∗∗
(0.070) (0.071)

Has other insurance (1=Yes) 0.473∗∗∗ 0.470∗∗∗
(0.148) (0.149)

Does not know Basix (1=Yes) −0.425∗∗∗ −0.415∗∗∗
(0.129) (0.130)

Belongs to Water User Group (1=Yes) 0.477 0.423
(0.369) (0.370)

No. of community-groups 0.125 0.126
(0.084) (0.084)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.050 0.097
(0.172) (0.174)

Muslim (1=Yes) 0.296 0.338
(0.284) (0.285)

Gender (1=Male) 0.005 0.067
(0.235) (0.240)

Log household head age 0.175 0.148
(0.217) (0.218)

Household size 0.019 0.019
(0.019) (0.019)

High Education (1=Yes) 0.078 0.078
(0.117) (0.117)

Village Endorsed (1=Yes) 0.012 0.003
(0.138) (0.138)

Constant −1.541∗∗∗ −1.541∗∗∗ −1.389∗∗∗ −2.939∗∗∗ −2.712∗∗∗
(0.152) (0.152) (0.163) (0.900) (0.908)

Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
Log Likelihood −433.694 −433.694 −430.596 −399.257 −396.420
Akaike Inf. Crit. 879.388 879.388 875.192 842.515 840.840
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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Table 34: Determinants of insurance demand (risk aversion)

Dependent variable:
Insurance Take-Up

(1) (2) (3) (4) (5)
Risk Aversion −0.099∗∗ −0.051 −0.156∗∗∗ −0.123∗∗ −0.177∗∗

(0.050) (0.049) (0.060) (0.060) (0.070)

Visit (1=Yes) 0.192∗∗∗ 0.191∗∗∗ 0.187∗∗∗ 0.145∗∗∗ 0.145∗∗∗
(0.036) (0.035) (0.035) (0.050) (0.050)

Endorsement (1=Yes) 0.060∗ 0.080∗∗ 0.078∗∗ 0.059 0.102
(0.033) (0.035) (0.035) (0.036) (0.075)

High Reward (1=Yes) 0.380∗∗∗ 0.376∗∗∗ 0.382∗∗∗ 0.376∗∗∗ 0.255∗∗∗
(0.031) (0.031) (0.031) (0.031) (0.065)

Insurance Education (1=Yes) −0.006 −0.010 −0.186∗∗∗ −0.180∗∗∗ −0.157∗∗
(0.031) (0.030) (0.064) (0.064) (0.065)

Risk Aversion × Insurance Education 0.316∗∗∗ 0.314∗∗∗ 0.277∗∗∗
(0.102) (0.101) (0.104)

Risk Aversion × Endorsement −0.072
(0.118)

Risk Aversion × High Reward 0.220∗∗
(0.105)

Percent of irrigated land 0.009 0.011
(0.033) (0.033)

Above average expected monsoon rain −0.019 −0.020
(0.013) (0.013)

Insurance demand in 2004 (1=Yes) 0.079∗∗ 0.080∗∗
(0.034) (0.034)

Insurance skills −0.004 −0.004
(0.016) (0.016)

Has other insurance (1=Yes) 0.090∗∗∗ 0.091∗∗∗
(0.033) (0.033)

Does not know Basix (1=Yes) −0.073∗∗ −0.071∗∗
(0.031) (0.031)

Belongs to Water User Group (1=Yes) 0.044 0.040
(0.094) (0.094)

No. of community-groups 0.019 0.016
(0.021) (0.021)

Belongs to Scheduled Caste/Tribe (1=Yes) 0.016 0.024
(0.042) (0.042)

Muslim (1=Yes) −0.021 −0.017
(0.076) (0.076)

Gender (1=Male) 0.004 0.009
(0.056) (0.056)

Log household head age 0.060 0.057
(0.052) (0.052)

Household size 0.003 0.003
(0.005) (0.005)

High Education (1=Yes) 0.056∗ 0.057∗
(0.030) (0.030)

Village Endorsed (1=Yes) 0.064 0.065
(0.059) (0.059)

Constant 0.100∗∗∗
(0.037)

Village Fixed Effects No Yes Yes Yes Yes
Observations 941 941 941 941 941
Mean Dependent Variable 0.302 0.302 0.302 0.302 0.302
R2 0.279 0.356 0.363 0.390 0.393
Adjusted R2 0.276 0.327 0.333 0.350 0.352
Residual Std. Error 0.391 0.377 0.375 0.370 0.370
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis.
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